0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent Advances in Imidazolium-Based Dicationic Ionic Liquids as Organocatalysts: A Mini-Review

      , , , , ,
      Materials
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Imidazolium-based dicationic ionic liquids (DILs) are gaining considerable space in the field of organocatalysis mainly due to the opportunities in offering new possible applicable structural variations. In addition to the well-known variables which made the ionic liquids (ILs) famous as the type of cation and anion used, the nature of the molecular spacer moiety turns out a further possibility to improve some physicochemical properties, for example, solubility, acidity, electrochemical behavior, and so on. For this reason, this class of ionic liquids has been considered as possible competitors to their corresponding monocationic salts in replacing common catalysts in organic synthesis, particularly in cases in which their bidentate nature could positively affect the catalytic activity. This mini-review is intended to highlight the progress carried out in the last six years in the field of organocatalysis, including DILs as such and as hybrids with polymers, nanomaterials, and composites.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Phase modifiers promote efficient production of hydroxymethylfurfural from fructose.

          Furan derivatives obtained from renewable biomass resources have the potential to serve as substitutes for the petroleum-based building blocks that are currently used in the production of plastics and fine chemicals. We developed a process for the selective dehydration of fructose to 5-hydroxymethylfurfural (HMF) that operates at high fructose concentrations (10 to 50 weight %), achieves high yields (80% HMF selectivity at 90% fructose conversion), and delivers HMF in a separation-friendly solvent. In a two-phase reactor system, fructose is dehydrated in the aqueous phase with the use of an acid catalyst (hydrochloric acid or an acidic ion-exchange resin) with dimethylsulfoxide and/or poly(1-vinyl-2-pyrrolidinone) added to suppress undesired side reactions. The HMF product is continuously extracted into an organic phase (methylisobutylketone) modified with 2-butanol to enhance partitioning from the reactive aqueous solution.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Recent advances in carbon dioxide utilization

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Structural and catalytic properties of chelating bis- and tris-N-heterocyclic carbenes

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                MATEG9
                Materials
                Materials
                MDPI AG
                1996-1944
                February 2022
                January 23 2022
                : 15
                : 3
                : 866
                Article
                10.3390/ma15030866
                5a4b5a03-8236-496b-8d0f-dce29e5c4888
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article