20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of reference genes for reverse transcription quantitative real-time PCR (RT-qPCR) studies in Silene vulgaris considering the method of cDNA preparation

      research-article
      , , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Accurate gene expression measurements are essential in studies of both crop and wild plants. Reverse transcription quantitative real-time PCR (RT-qPCR) has become a preferred tool for gene expression estimation. A selection of suitable reference genes for the normalization of transcript levels is an essential prerequisite of accurate RT-qPCR results. We evaluated the expression stability of eight candidate reference genes across roots, leaves, flower buds and pollen of Silene vulgaris (bladder campion), a model plant for the study of gynodioecy. As random priming of cDNA is recommended for the study of organellar transcripts and poly(A) selection is indicated for nuclear transcripts, we estimated gene expression with both random-primed and oligo(dT)-primed cDNA. Accordingly, we determined reference genes that perform well with oligo(dT)- and random-primed cDNA, making it possible to estimate levels of nucleus-derived transcripts in the same cDNA samples as used for organellar transcripts, a key benefit in studies of cyto-nuclear interactions. Gene expression variance was estimated by RefFinder, which integrates four different analytical tools. The SvACT and SvGAPDH genes were the most stable candidates across various organs of S. vulgaris, regardless of whether pollen was included or not.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR

          Background Control genes, which are often referred to as housekeeping genes, are frequently used to normalise mRNA levels between different samples. However, the expression level of these genes may vary among tissues or cells and may change under certain circumstances. Thus, the selection of housekeeping genes is critical for gene expression studies. To address this issue, 7 candidate housekeeping genes including several commonly used ones were investigated in isolated human reticulocytes. For this, a simple ΔCt approach was employed by comparing relative expression of 'pairs of genes' within each sample. On this basis, stability of the candidate housekeeping genes was ranked according to repeatability of the gene expression differences among 31 samples. Results Initial screening of the expression pattern demonstrated that 1 of the 7 genes was expressed at very low levels in reticulocytes and was excluded from further analysis. The range of expression stability of the other 6 genes was (from most stable to least stable): GAPDH (glyceraldehyde 3-phosphate dehydrogenase), SDHA (succinate dehydrogenase), HPRT1 (hypoxanthine phosphoribosyl transferase 1), HBS1L (HBS1-like protein) and AHSP (alpha haemoglobin stabilising protein), followed by B2M (beta-2-microglobulin). Conclusion Using this simple approach, GAPDH was found to be the most suitable housekeeping gene for expression studies in reticulocytes while the commonly used B2M should be avoided.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress.

            Plant stress studies are more and more based on gene expression. The analysis of gene expression requires sensitive, precise, and reproducible measurements for specific mRNA sequences. Real-time RT-PCR is at present the most sensitive method for the detection of low abundance mRNA. To avoid bias, real-time RT-PCR is referred to one or several internal control genes, which should not fluctuate during treatments. Here, the non-regulation of seven housekeeping genes (beta-tubulin, cyclophilin, actin, elongation factor 1-alpha (ef1alpha), 18S rRNA, adenine phosphoribosyl transferase (aprt), and cytoplasmic ribosomal protein L2) during biotic (late blight) and abiotic stresses (cold and salt stress) was tested on potato plants using geNorm software. Results from the three experimental conditions indicated that ef1alpha was the most stable among the seven tested. The expression of the other housekeeping genes tested varied upon stress. In parallel, a study of the variability of expression of hsp20.2, shown to be implicated in late blight stress, was realized. The relative quantification of the hsp20.2 gene varied according to the internal control and the number of internal controls used, thus highlighting the importance of the choice of internal controls in such experiments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development

              Background Accuracy in quantitative real-time RT-PCR is dependent on high quality RNA, consistent cDNA synthesis, and validated stable reference genes for data normalization. Reference genes used for normalization impact the results generated from expression studies and, hence, should be evaluated prior to use across samples and treatments. Few statistically validated reference genes have been reported in grapevine. Moreover, success in isolating high quality RNA from grapevine tissues is typically limiting due to low pH, and high polyphenolic and polysaccharide contents. Results We describe optimization of an RNA isolation procedure that compensates for the low pH found in grape berries and improves the ability of the RNA to precipitate. This procedure was tested on pericarp and seed developmental series, as well as steady-state leaf, root, and flower tissues. Additionally, the expression stability of actin, AP47 (clathrin-associated protein), cyclophilin, EF1-α (elongation factor 1-α), GAPDH (glyceraldehyde 3-phosphate dehydrogenase), MDH (malate dehydrogenase), PP2A (protein phosphatase), SAND, TIP41, α-tubulin, β-tubulin, UBC (ubiquitin conjugating enzyme), UBQ-L40 (ubiquitin L40) and UBQ10 (polyubiquitin) were evaluated on Vitis vinifera cv. Cabernet Sauvignon pericarp using three different statistical approaches. Although several of the genes proved to be relatively stable, no single gene outperformed all other genes in each of the three evaluation methods tested. Furthermore, the effect of using one reference gene versus normalizing to the geometric mean of several genes is presented for the expression of an aquaporin and a sucrose transporter over a developmental series. Conclusion In order to quantify relative transcript abundances accurately using real-time RT-PCR, we recommend that combinations of several genes be used for normalization in grape berry development studies. Our data support GAPDH, actin, EF1-α and SAND as the most relevant reference genes for this purpose.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: MethodologyRole: Writing – original draft
                Role: Data curationRole: Formal analysisRole: MethodologyRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: Funding acquisitionRole: Project administrationRole: ValidationRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                17 August 2017
                2017
                : 12
                : 8
                : e0183470
                Affiliations
                [001]Plant Reproduction Laboratory, Institute of Experimental Botany v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
                University of Naples Federico II, ITALY
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0001-6701-179X
                Article
                PONE-D-17-03318
                10.1371/journal.pone.0183470
                5560574
                28817728
                5a487317-7145-4c03-b5ef-91ca3c00a4f4
                © 2017 Koloušková et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 25 January 2017
                : 4 August 2017
                Page count
                Figures: 3, Tables: 4, Pages: 14
                Funding
                Funded by: Ministry of Education, Youth and Sports of the Czech Republic (MŠMT)
                Award ID: KONTAKT II LH15075
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100001824, Grantová Agentura České Republiky;
                Award ID: 16-09220S
                Award Recipient :
                This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic (MŠMT) ( http://www.msmt.cz/research-and-development-1) grant: KONTAKT II LH15075 and the Grantová agentura České republiky ( https://gacr.cz/en/) grant: 16-09220S. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and life sciences
                Genetics
                DNA
                Forms of DNA
                Complementary DNA
                Biology and life sciences
                Biochemistry
                Nucleic acids
                DNA
                Forms of DNA
                Complementary DNA
                Biology and Life Sciences
                Genetics
                Gene Expression
                Biology and Life Sciences
                Plant Science
                Plant Anatomy
                Pollen
                Biology and Life Sciences
                Organisms
                Plants
                Flowering Plants
                Biology and Life Sciences
                Plant Science
                Plant Anatomy
                Flowers
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                Non-coding RNA
                Ribosomal RNA
                Biology and life sciences
                Biochemistry
                Ribosomes
                Ribosomal RNA
                Biology and life sciences
                Cell biology
                Cellular structures and organelles
                Ribosomes
                Ribosomal RNA
                Biology and Life Sciences
                Plant Science
                Plant Anatomy
                Buds
                Biology and Life Sciences
                Plant Science
                Plant Anatomy
                Leaves
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article