16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interactive Effects of Salicylic Acid and Nitric Oxide in Enhancing Rice Tolerance to Cadmium Stress

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cadmium (Cd) is one of the prominent environmental hazards, affecting plant productivity and posing human health risks worldwide. Although salicylic acid (SA) and nitric oxide (NO) are known to have stress mitigating roles, little was explored on how they work together against Cd-toxicity in rice. This study evaluated the individual and combined effects of SA and sodium nitroprusside (SNP), a precursor of NO, on Cd-stress tolerance in rice. Results revealed that Cd at toxic concentrations caused rice biomass reduction, which was linked to enhanced accumulation of Cd in roots and leaves, reduced photosynthetic pigment contents, and decreased leaf water status. Cd also potentiated its phytotoxicity by triggering reactive oxygen species (ROS) generation and depleting several non-enzymatic and enzymatic components in rice leaves. In contrast, SA and/or SNP supplementation with Cd resulted in growth recovery, as evidenced by greater biomass content, improved leaf water content, and protection of photosynthetic pigments. These signaling molecules were particularly effective in restricting Cd uptake and accumulation, with the highest effect being observed in “SA + SNP + Cd” plants. SA and/or SNP alleviated Cd-induced oxidative damage by reducing ROS accumulation and malondialdehyde production through the maintenance of ascorbate and glutathione levels, and redox status, as well as the better activities of antioxidant enzymes superoxide dismutase, catalase, glutathione S-transferase, and monodehydroascorbate reductase. Combined effects of SA and SNP were observed to be more prominent in Cd-stress mitigation than the individual effects of SA followed by that of SNP, suggesting that SA and NO in combination more efficiently boosted physiological and biochemical responses to alleviate Cd-toxicity than either SA or NO alone. This finding signifies a cooperative action of SA and NO in mitigating Cd-induced adverse effects in rice, and perhaps in other crop plants.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Rapid determination of free proline for water-stress studies

          Plant and Soil, 39(1), 205-207
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants

            Abiotic stresses (such as metals/metalloids, salinity, ozone, UV-B radiation, extreme temperatures, and drought) are among the most challenging threats to agricultural system and economic yield of crop plants. These stresses (in isolation and/or combination) induce numerous adverse effects in plants, impair biochemical/physiological and molecular processes, and eventually cause severe reductions in plant growth, development and overall productivity. Phytohormones have been recognized as a strong tool for sustainably alleviating adverse effects of abiotic stresses in crop plants. In particular, the significance of salicylic acid (SA) has been increasingly recognized in improved plant abiotic stress-tolerance via SA-mediated control of major plant-metabolic processes. However, the basic biochemical/physiological and molecular mechanisms that potentially underpin SA-induced plant-tolerance to major abiotic stresses remain least discussed. Based on recent reports, this paper: (a) overviews historical background and biosynthesis of SA under both optimal and stressful environments in plants; (b) critically appraises the role of SA in plants exposed to major abiotic stresses; (c) cross-talks potential mechanisms potentially governing SA-induced plant abiotic stress-tolerance; and finally (d) briefly highlights major aspects so far unexplored in the current context.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plant nutrition for sustainable development and global health.

              Plants require at least 14 mineral elements for their nutrition. These include the macronutrients nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg) and sulphur (S) and the micronutrients chlorine (Cl), boron (B), iron (Fe), manganese (Mn), copper (Cu), zinc (Zn), nickel (Ni) and molybdenum (Mo). These are generally obtained from the soil. Crop production is often limited by low phytoavailability of essential mineral elements and/or the presence of excessive concentrations of potentially toxic mineral elements, such as sodium (Na), Cl, B, Fe, Mn and aluminium (Al), in the soil solution. This article provides the context for a Special Issue of the Annals of Botany on 'Plant Nutrition for Sustainable Development and Global Health'. It provides an introduction to plant mineral nutrition and explains how mineral elements are taken up by roots and distributed within plants. It introduces the concept of the ionome (the elemental composition of a subcellular structure, cell, tissue or organism), and observes that the activities of key transport proteins determine species-specific, tissue and cellular ionomes. It then describes how current research is addressing the problems of mineral toxicities in agricultural soils to provide food security and the optimization of fertilizer applications for economic and environmental sustainability. It concludes with a perspective on how agriculture can produce edible crops that contribute sufficient mineral elements for adequate animal and human nutrition.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                18 November 2019
                November 2019
                : 20
                : 22
                : 5798
                Affiliations
                [1 ]Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; mostofa@ 123456bsmrau.edu.bd
                [2 ]Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; mrahman@ 123456bsmrau.edu.bd
                [3 ]Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; ansarymu.ju@ 123456gmail.com
                [4 ]Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan; fujita@ 123456ag.kagawa-u.ac.jp
                [5 ]Plant Stress Research Group, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
                [6 ]Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
                Author notes
                [* ]Correspondence: sontran@ 123456tdtu.edu.vn
                Author information
                https://orcid.org/0000-0001-8822-9683
                https://orcid.org/0000-0001-9883-9768
                Article
                ijms-20-05798
                10.3390/ijms20225798
                6888396
                31752185
                5a47e517-55b4-470a-a385-1394f438df7b
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 27 September 2019
                : 15 November 2019
                Categories
                Article

                Molecular biology
                cadmium toxicity,growth inhibition,oxidative stress,rice tolerance,ros detoxification,salicylic acid,sodium nitroprusside

                Comments

                Comment on this article