9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Medial Frontal GABA is Lower in Older Schizophrenia: A MEGA-PRESS with Macromolecule Suppression Study

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gamma-butyric acid (GABA) dysfunction has been implicated in the pathophysiology of schizophrenia and its cognitive deficits. Proton magnetic resonance spectroscopy (MRS) was used to test the hypothesis that older participants with schizophrenia have lower anterior cingulate GABA levels compared to older control participants. One-hundred and forty-five participants completed this study. For detection of GABA, spectra were acquired from the medial frontal/anterior cingulate cortex using a macromolecule-suppressed MEGA-PRESS sequence. Patients were evaluated for psychopathology and all participants completed neuropsychological tests of working memory, processing speed, and functional capacity. GABA levels were significantly lower in the older participants with schizophrenia(n=31) compared to the older control(n=37) group (p=0.003) but not between the younger control(n=40) and schizophrenia (n=29) groups (p=0.994). Age strongly predicted GABA levels in the schizophrenia group accounting for 42% of the variance, but the effect of age was less in the control group accounting for 5.7% of the variance. GABA levels were specifically related to working memory but not processing speed performance, functional capacity, or positive or negative symptom severity. This is the largest MRS study of GABA in schizophrenia and the first to examine GABA without macromolecule contamination, a potentially significant issue in previous studies. GABA levels more rapidly declined with advancing age in the schizophrenia compared to the control group. Interventions targeted at halting the decline or increasing GABA levels may improve functional outcomes and quality of life as patients with schizophrenia age.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Cortical inhibitory neurons and schizophrenia.

          Impairments in certain cognitive functions, such as working memory, are core features of schizophrenia. Convergent findings indicate that a deficiency in signalling through the TrkB neurotrophin receptor leads to reduced GABA (gamma-aminobutyric acid) synthesis in the parvalbumin-containing subpopulation of inhibitory GABA neurons in the dorsolateral prefrontal cortex of individuals with schizophrenia. Despite both pre- and postsynaptic compensatory responses, the resulting alteration in perisomatic inhibition of pyramidal neurons contributes to a diminished capacity for the gamma-frequency synchronized neuronal activity that is required for working memory function. These findings reveal specific targets for therapeutic interventions to improve cognitive function in individuals with schizophrenia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Simultaneous in vivo spectral editing and water suppression.

            Water suppression is typically performed in vivo by exciting the longitudinal magnetization in combination with dephasing, or by using frequency-selective coherence generation. MEGA, a frequency-selective refocusing technique, can be placed into any pulse sequence element designed to generate a Hahn spin-echo or stimulated echo, to dephase transverse water coherences with minimal spectral distortions. Water suppression performance was verified in vivo using stimulated echo acquisition mode (STEAM) localization, which provided water suppression comparable with that achieved with four selective pulses in 3,1-DRYSTEAM. The advantage of the proposed method was exploited for editing J-coupled resonances. Using a double-banded pulse that selectively inverts a J-coupling partner and simultaneously suppresses water, efficient metabolite editing was achieved in the point resolved spectroscopy (PRESS) and STEAM sequences in which MEGA was incorporated. To illustrate the efficiency of the method, the detection of gamma-aminobutyric acid (GABA) was demonstrated, with minimal contributions from macromolecules and overlying singlet peaks at 4 T. The estimated occipital GABA concentration was consistent with previous reports, suggesting that editing for GABA is efficient when based on MEGA at high field strengths.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE).

              A new three-dimensional imaging technique which is applicable for 3D MR imaging throughout the body is introduced. In our preliminary investigations we have acquired high-quality 3D image sets of the abdomen showing minimal respiratory artifacts in just over 7 min (voxel size 2.7 X 2.7 X 2.7 mm3), and 3D image sets of the head showing excellent gray/white contrast in less than 6 min (voxel size 1.0 X 2.0 X 1.4 mm3).
                Bookmark

                Author and article information

                Journal
                9607835
                20545
                Mol Psychiatry
                Mol. Psychiatry
                Molecular psychiatry
                1359-4184
                1476-5578
                29 May 2015
                31 March 2015
                February 2016
                01 August 2016
                : 21
                : 2
                : 198-204
                Affiliations
                [1 ]Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine
                [2 ]Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine
                [3 ]Department of Psychology, University of Maryland Baltimore County
                [4 ]Department of Physics, University of Maryland Baltimore County
                Author notes
                [* ]Corresponding Author. Maryland Psychiatric Research Center, P.O. Box 21247, Baltimore, MD 21228, 410-402-6803, lrowland@ 123456mprc.umaryland.edu
                Article
                NIHMS667424
                10.1038/mp.2015.34
                4591074
                25824298
                5a2e05a1-cb21-41bf-86a8-635b77893b6c

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article