3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Concerted actions of PRR- and NLR-mediated immunity

      , , ,
      ,
      Essays in Biochemistry
      Portland Press Ltd.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plants utilise cell-surface immune receptors (functioning as pattern recognition receptors, PRRs) and intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) to detect pathogens. Perception of pathogens by these receptors activates immune signalling and resistance to infections. PRR- and NLR-mediated immunity have primarily been considered parallel processes contributing to disease resistance. Recent studies suggest that these two pathways are interdependent and converge at multiple nodes. This review summarises and provides a perspective on these convergent points.

          Related collections

          Most cited references140

          • Record: found
          • Abstract: found
          • Article: not found

          The plant immune system.

          Many plant-associated microbes are pathogens that impair plant growth and reproduction. Plants respond to infection using a two-branched innate immune system. The first branch recognizes and responds to molecules common to many classes of microbes, including non-pathogens. The second responds to pathogen virulence factors, either directly or through their effects on host targets. These plant immune systems, and the pathogen molecules to which they respond, provide extraordinary insights into molecular recognition, cell biology and evolution across biological kingdoms. A detailed understanding of plant immune function will underpin crop improvement for food, fibre and biofuels production.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response.

            Reactive oxygen intermediates (ROI) are strongly associated with plant defense responses. The origin of these ROI has been controversial. Arabidopsis respiratory burst oxidase homologues (rboh genes) have been proposed to play a role in ROI generation. We analyzed lines carrying dSpm insertions in the highly expressed AtrbohD and AtrbohF genes. Both are required for full ROI production observed during incompatible interactions with the bacterial pathogen Pseudomonas syringae pv. tomato DC3000(avrRpm1) and the oomycete parasite Peronospora parasitica. We also observed reduced cell death, visualized by trypan blue stain and reduced electrolyte leakage, in the Atrboh mutants after DC3000(avrRpm1) inoculation. However, enhanced cell death is observed after infection of mutant lines with P. parasitica. Paradoxically, although atrbohD mutation eliminated the majority of total ROI production, atrbohF mutation exhibited the strongest effect on cell death.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plant PRRs and the activation of innate immune signaling.

              Despite being sessile organisms constantly exposed to potential pathogens and pests, plants are surprisingly resilient to infections. Plants can detect invaders via the recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). Plant PRRs are surface-localized receptor-like kinases, which comprise a ligand-binding ectodomain and an intracellular kinase domain, or receptor-like proteins, which do not exhibit any known intracellular signaling domain. In this review, we summarize recent discoveries that shed light on the molecular mechanisms underlying ligand perception and subsequent activation of plant PRRs. Notably, plant PRRs appear as central components of multiprotein complexes at the plasma membrane that contain additional transmembrane and cytosolic kinases required for the initiation and specificity of immune signaling. PRR complexes are under tight control by protein phosphatases, E3 ligases, and other regulatory proteins, illustrating the exquisite and complex regulation of these molecular machines whose proper activation underlines a crucial layer of plant immunity. Copyright © 2014 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Essays in Biochemistry
                Portland Press Ltd.
                0071-1365
                1744-1358
                September 2022
                September 30 2022
                September 30 2022
                September 2022
                September 30 2022
                September 30 2022
                : 66
                : 5
                : 501-511
                Article
                10.1042/EBC20220067
                35762737
                5a1aa357-eaf0-4d24-a66e-6e49cff8475e
                © 2022
                History

                Comments

                Comment on this article