6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibition of Ep3 attenuates migration and promotes apoptosis of non-small cell lung cancer cells via suppression of TGF-β/Smad signaling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Non-small cell lung cancer (NSCLC) is the most common cause of cancer-associated mortality worldwide. Prostaglandin E2 (PGE2) regulates various biological processes, including invasion, proliferation and apoptosis. E-prostanoid 3 (Ep3) is a PGE2 receptor, and the functional role of Ep3 in the progression of NSCLC remains unresolved. The present study investigated the effects of Ep3 in A549 cells and explored the underlying molecular mechanisms. The results revealed that the mRNA and protein expression levels of Ep3 were significantly upregulated in NSCLC tissues and A549 cells. Pharmacological inhibition of Ep3 or RNA interference against Ep3 attenuated the cell viability, migration and invasion, and promoted apoptosis in A549 cells. Ep3 deficiency also decreased the expression of transforming growth factor (TGF)-β, phosphorylated (p)-Smad2 and p-Smad3. The transfection of TGF-β overexpression plasmids reversed the effects of Ep3 deficiency on the cell viability and apoptosis in A549 cells. Finally, an in vivo experiment revealed that Ep3-siRNA transfection strongly reduced the tumor growth and tumor volume. The Ep3-siRNA transfection also inhibited tumor metastasis via suppression of the expression of metastasis-associated proteins. Taken together, these findings indicate that inhibition of Ep3 attenuates the viability and migration, and promotes the apoptosis of NSCLC through suppression of the TGF-β/Smad signaling pathway. Targeting of the Ep3/TGF-β/Smad signaling pathway may be a novel therapeutic strategy for the prevention and treatment of NSCLC.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          How cells read TGF-beta signals.

          Cell proliferation, differentiation and death are controlled by a multitude of cell-cell signals, and loss of this control has devastating consequences. Prominent among these regulatory signals is the transforming growth factor-beta (TGF-beta) family of cytokines, which can trigger a bewildering diversity of responses, depending on the genetic makeup and environment of the target cell. What are the networks of cell-specific molecules that mould the TGF-beta response to each cell's needs?
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Transcriptional control by the TGF-beta/Smad signaling system.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer.

              Cyclooxygenase (COX)-2 and its product prostaglandin (PG) E2 underlie an immunosuppressive network that is important in the pathogenesis of non-small cell lung cancer. CD4+ CD25+ T regulatory (Treg) cells play an important role in maintenance of immunologic self-tolerance. CD4+ CD25+ Treg cell activities increase in lung cancer and appear to play a role in suppressing antitumor immune responses. Definition of the pathways controlling Treg cell activities will enhance our understanding of limitation of the host antitumor immune responses. Tumor-derived COX-2/PGE2 induced expression of the Treg cell-specific transcription factor, Foxp3, and increased Treg cell activity. Assessment of E-prostanoid (EP) receptor requirements revealed that PGE2-mediated induction of Treg cell Foxp3 gene expression was significantly reduced in the absence of the EP4 receptor and ablated in the absence of the EP2 receptor expression. In vivo, COX-2 inhibition reduced Treg cell frequency and activity, attenuated Foxp3 expression in tumor-infiltrating lymphocytes, and decreased tumor burden. Transfer of Treg cells or administration of PGE2 to mice receiving COX-2 inhibitors reversed these effects. We conclude that inhibition of COX-2/PGE2 suppresses Treg cell activity and enhances antitumor responses.
                Bookmark

                Author and article information

                Journal
                Oncol Lett
                Oncol Lett
                OL
                Oncology Letters
                D.A. Spandidos
                1792-1074
                1792-1082
                November 2018
                04 September 2018
                04 September 2018
                : 16
                : 5
                : 5645-5654
                Affiliations
                Department of Respiration, Zhoukou Central Hospital, Zhoukou, Henan 466000, P.R. China
                Author notes
                Correspondence to: Professor Yanping Lv, Department of Respiration, Zhoukou Central Hospital, 26 People's Road, The Eastern Section of Chuanhui, Zhoukou, Henan 466000, P.R. China, E-mail: yanpinglvypl@ 123456163.com
                Article
                OL-0-0-9391
                10.3892/ol.2018.9391
                6176252
                30344720
                5a15647a-7c1a-403a-a2db-31b250459e26
                Copyright: © Li et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 27 February 2017
                : 19 June 2018
                Categories
                Articles

                Oncology & Radiotherapy
                e-prostanoid 3,non-small cell lung cancer cells,cell growth,cell invasion,tumor growth factor-β/smad signaling

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content430

                Cited by7

                Most referenced authors835