Piezocatalytic therapy is a new‐emerging reactive oxygen species (ROS)‐enabled therapeutic strategy that relies on built‐in electric field and energy‐band bending of piezoelectric materials activated by ultrasound (US) irradiation. Despite becoming a hot topic, material development and mechanism exploration are still underway. Herein, as‐synthesized oxygen‐vacancy‐rich BiO 2− x nanosheets (NSs) demonstrate outstanding piezoelectric properties. Under US, a piezo‐potential of 0.25 V for BiO 2− x NSs is sufficient to tilt the conduction band to be more negative than the redox potentials of O 2/ •O 2 −, •O 2 −/H 2O 2, and H 2O 2/ •OH, which initiates a cascade reaction for ROS generation. Moreover, the BiO 2− x NSs exhibit peroxidase and oxidase‐like activities to augment ROS production, especially in the H 2O 2‐overexpressed tumor microenvironment. Density functional theory calculations show that the generated oxygen vacancies in BiO 2− x NSs are favorable for H 2O 2 adsorption and increasing the carrier density to produce ROS. Furthermore, the quick movement of electrons enables an excellent sonothermal effect, for example, rapid rise in temperature to nearly 65 °C upon US with low power (1.2 W cm −2) and short time (96 s). Therefore, this system realizes a multimode synergistic combination of piezocatalytic, enzymatic, and sonothermal therapies, providing a new direction for defect engineering‐optimized piezoelectric materials for tumor therapy.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.