53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Is the Even Distribution of Insecticide-Treated Cattle Essential for Tsetse Control? Modelling the Impact of Baits in Heterogeneous Environments

      research-article
      1 , * , 1 , 2
      PLoS Neglected Tropical Diseases
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Eliminating Rhodesian sleeping sickness, the zoonotic form of Human African Trypanosomiasis, can be achieved only through interventions against the vectors, species of tsetse ( Glossina). The use of insecticide-treated cattle is the most cost-effective method of controlling tsetse but its impact might be compromised by the patchy distribution of livestock. A deterministic simulation model was used to analyse the effects of spatial heterogeneities in habitat and baits (insecticide-treated cattle and targets) on the distribution and abundance of tsetse.

          Methodology/Principal Findings

          The simulated area comprised an operational block extending 32 km from an area of good habitat from which tsetse might invade. Within the operational block, habitat comprised good areas mixed with poor ones where survival probabilities and population densities were lower. In good habitat, the natural daily mortalities of adults averaged 6.14% for males and 3.07% for females; the population grew 8.4× in a year following a 90% reduction in densities of adults and pupae, but expired when the population density of males was reduced to <0.1/km 2; daily movement of adults averaged 249 m for males and 367 m for females. Baits were placed throughout the operational area, or patchily to simulate uneven distributions of cattle and targets. Gaps of 2–3 km between baits were inconsequential provided the average imposed mortality per km 2 across the entire operational area was maintained. Leaving gaps 5–7 km wide inside an area where baits killed 10% per day delayed effective control by 4–11 years. Corrective measures that put a few baits within the gaps were more effective than deploying extra baits on the edges.

          Conclusions/Significance

          The uneven distribution of cattle within settled areas is unlikely to compromise the impact of insecticide-treated cattle on tsetse. However, where areas of >3 km wide are cattle-free then insecticide-treated targets should be deployed to compensate for the lack of cattle.

          Author Summary

          Eliminating Rhodesian sleeping sickness, the zoonotic form of Human African Trypanosomiasis found in East and Southern Africa, can be achieved only through eliminating the vectors, species of tsetse fly ( Glossina). The deployment of insecticide-treated cattle is the most cost-effective means of achieving this. However, the even distribution of insecticide-treated cattle is seldom possible due to the patchy distribution of grazing, water and human settlement. We used a simulation model to explore the likely impact of such patchiness on the outcome of control operations against tsetse. The results suggest that even in areas that are highly suitable for tsetse, gaps of up to 3 km in the distribution of insecticide-treated cattle will not have a material impact on the success of an operation provided the overall mean density of cattle across all areas is adequate to achieve control (e.g., ∼4 insecticide-treated cattle/km 2 killing 10% per day of the tsetse in the area treated). If the gaps are larger than 3 km, then deploying insecticide-treated targets at densities of 4/km 2 in the cattle-free areas will ensure success.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Aiming to eliminate tsetse from Africa.

          The problem of tsetse-transmitted trypanosomiasis occurs only in sub-Saharan Africa, where it represents a major constraint to socio-economic development. The East African form of sleeping sickness, caused by Trypanosoma brucei rhodensiense, is an acute and fatal disease, whereas the West African form, caused by Trypanosoma brucei gambiense, is generally more chronic and debilitating. The African governments have developed a new initiative, known as the Pan African Tsetse and Trypanosomiasis Eradication Campaign, which seeks to employ an area-wide approach and appropriate fly suppression methods to eradicate tsetse from areas of tsetse infestation, at a time, to ultimately create tsetse-free zones.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The use of aerial spraying to eliminate tsetse from the Okavango Delta of Botswana.

            In Botswana, 16,000 km(2) of the Okavango Delta were aerial sprayed five times with deltamethrin, applied at 0.26-0.3g/ha, to control Glossina morsitans centralis Machado (Diptera: Glossinidae) over a period of approximately 8 weeks. The northern half of the Delta (7180 km(2)) was sprayed in June-September 2001 and the southern half (8720 km(2)) in May-August 2002. A barrier (mean width approximately 10 km) of 12,000 deltamethrin-treated targets was deployed at the interface of these two blocks to prevent tsetse from invading from the southern to the northern block. Prior to spraying, the mean catches of tsetse from man fly-rounds were 44.6 round/day in the northern block and 101 in the southern. Between September 2002 and November 2005, surveys ( approximately 820 daily fly-rounds and approximately 2050 trap-days) in the northern and southern blocks failed to detect tsetse. Simulations of tsetse populations suggest that while spraying operations can reduce tsetse populations to levels that are difficult to detect by standard survey techniques, such populations will recover to densities >100 tsetse/km(2) after 1000 days, at which density there is a very high probability (>0.999) that the survey methods will catch at least one fly. Since none was caught, it is argued that tsetse have been eliminated from the Delta. The particular success of this operation in comparison to the 18 aerial spraying operations conducted in the Delta prior to 2001 is attributed to the application of an adequate dose of insecticide, the use of a GPS-based navigation system to ensure even application of insecticide, and the large size and spatial arrangement of the spray blocks coupled with the use of a barrier of targets which prevented tsetse from re-invading the northern sprayed block before the southern one was treated.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Less is more: restricted application of insecticide to cattle to improve the cost and efficacy of tsetse control.

              Studies were carried out in Zimbabwe of the responses of tsetse to cattle treated with deltamethrin applied to the parts of the body where most tsetse were shown to land. Large proportions of Glossina pallidipes Austen (Diptera: Glossinidae) landed on the belly ( approximately 25%) and legs ( approximately 70%), particularly the front legs ( approximately 50%). Substantial proportions of Glossina morsitans morsitans Westwood landed on the legs ( approximately 50%) and belly (25%), with the remainder landing on the torso, particularly the flanks ( approximately 15%). Studies were made of the knockdown rate of wild, female G. pallidipes exposed to cattle treated with a 1% pour-on or 0.005% suspension concentrate of deltamethrin applied to the (a) whole body, (b) belly and legs, (c) legs, (d) front legs, (e) middle and lower front legs, or (f) lower front legs. The restricted treatments used 20%, 10%, 5%, 2% or 1% of the active ingredient applied in the whole-body treatments. There was a marked seasonal effect on the performance of all treatments. With the whole-body treatment, the persistence period (knockdown > 50%) ranged from approximately 10 days during the hot, wet season (mean daily temperature > 30 degrees C) to approximately 20 days during the cool, dry season (< 22 degrees C). Restricting the application of insecticide reduced the seasonal persistence periods to approximately 10-15 days if only the legs and belly were treated, approximately 5-15 days if only the legs were treated and < 5 days for the more restricted treatments. The restricted application did not affect the landing distribution of tsetse or the duration of landing bouts (mean = 30 s). The results suggest that more cost-effective control of tsetse could be achieved by applying insecticide to the belly and legs of cattle at 2-week intervals, rather than using the current practice of treating the whole body of each animal at monthly intervals. This would cut the cost of insecticide by 40%, improve efficacy by 27% and reduce the threats to non-target organisms and the enzootic stability of tick-borne diseases.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                October 2011
                18 October 2011
                : 5
                : 10
                : e1360
                Affiliations
                [1 ]Natural Resources Institute, University of Greenwich, London, United Kingdom
                [2 ]South African Centre for Epidemiological Modelling and Analysis (SACEMA), University of Stellenbosch, Stellenbosch, South Africa
                Johns Hopkins Bloomberg School of Public Health, United States of America
                Author notes

                Conceived and designed the experiments: GAV SJT. Performed the experiments: GAV. Analyzed the data: SJT GAV. Wrote the paper: SJT GAV.

                Article
                PNTD-D-11-00582
                10.1371/journal.pntd.0001360
                3196476
                22028944
                5a012766-cb83-409c-846b-e82212fc2826
                Torr, Vale. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 18 June 2011
                : 29 August 2011
                Page count
                Pages: 11
                Categories
                Research Article
                Agriculture
                Pest Control
                Biology
                Population Biology
                Medicine
                Infectious Diseases
                Infectious Disease Modeling
                Neglected Tropical Diseases
                Veterinary Science
                Veterinary Diseases
                Zoonotic Diseases
                Trypanosomiasis

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article