7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Synergy of topoisomerase and structural-maintenance-of-chromosomes proteins creates a universal pathway to simplify genome topology

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Significance

          Vital biological processes such as gene transcription and cell division may be severely impaired by inevitable entanglements ensuing from the extreme length and confinement of the genome. The family of topoisomerase proteins has independently evolved in different organisms to resolve these topological problems, yet no existing model can explain how topoisomerase alone can reduce the topological complexity of DNA in vivo. We propose that a synergistic mechanism between topoisomerase and a family of slip-link–like proteins called structural maintenance of chromosomes (SMC) can provide a pathway to systematically resolve topological entanglements even under physiological crowding and confinement. Given the ubiquity of topoisomerase and SMC, we argue that the uncovered mechanism is at work throughout the cell cycle and across different organisms.

          Abstract

          Topological entanglements severely interfere with important biological processes. For this reason, genomes must be kept unknotted and unlinked during most of a cell cycle. Type II topoisomerase (TopoII) enzymes play an important role in this process but the precise mechanisms yielding systematic disentanglement of DNA in vivo are not clear. Here we report computational evidence that structural-maintenance-of-chromosomes (SMC) proteins—such as cohesins and condensins—can cooperate with TopoII to establish a synergistic mechanism to resolve topological entanglements. SMC-driven loop extrusion (or diffusion) induces the spatial localization of essential crossings, in turn catalyzing the simplification of knots and links by TopoII enzymes even in crowded and confined conditions. The mechanism we uncover is universal in that it does not qualitatively depend on the specific substrate, whether DNA or chromatin, or on SMC processivity; we thus argue that this synergy may be at work across organisms and throughout the cell cycle.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          SMC complexes: from DNA to chromosomes.

          SMC (structural maintenance of chromosomes) complexes - which include condensin, cohesin and the SMC5-SMC6 complex - are major components of chromosomes in all living organisms, from bacteria to humans. These ring-shaped protein machines, which are powered by ATP hydrolysis, topologically encircle DNA. With their ability to hold more than one strand of DNA together, SMC complexes control a plethora of chromosomal activities. Notable among these are chromosome condensation and sister chromatid cohesion. Moreover, SMC complexes have an important role in DNA repair. Recent mechanistic insight into the function and regulation of these universal chromosomal machines enables us to propose molecular models of chromosome structure, dynamics and function, illuminating one of the fundamental entities in biology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Self-organization of domain structures by DNA-loop-extruding enzymes

            The long chromosomal DNAs of cells are organized into loop domains much larger in size than individual DNA-binding enzymes, presenting the question of how formation of such structures is controlled. We present a model for generation of defined chromosomal loops, based on molecular machines consisting of two coupled and oppositely directed motile elements which extrude loops from the double helix along which they translocate, while excluding one another sterically. If these machines do not dissociate from DNA (infinite processivity), a disordered, exponential steady-state distribution of small loops is obtained. However, if dissociation and rebinding of the machines occurs at a finite rate (finite processivity), the steady state qualitatively changes to a highly ordered ‘stacked’ configuration with suppressed fluctuations, organizing a single large, stable loop domain anchored by several machines. The size of the resulting domain can be simply regulated by boundary elements, which halt the progress of the extrusion machines. Possible realizations of these types of molecular machines are discussed, with a major focus on structural maintenance of chromosome complexes and also with discussion of type I restriction enzymes. This mechanism could explain the geometrically uniform folding of eukaryote mitotic chromosomes, through extrusion of pre-programmed loops and concomitant chromosome compaction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl

              Mammalian genomes are spatially organized by CCCTC-binding factor (CTCF) and cohesin into chromatin loops and topologically associated domains, which have important roles in gene regulation and recombination. By binding to specific sequences, CTCF defines contact points for cohesin-mediated long-range chromosomal cis-interactions. Cohesin is also present at these sites, but has been proposed to be loaded onto DNA elsewhere and to extrude chromatin loops until it encounters CTCF bound to DNA. How cohesin is recruited to CTCF sites, according to this or other models, is unknown. Here we show that the distribution of cohesin in the mouse genome depends on transcription, CTCF and the cohesin release factor Wings apart-like (Wapl). In CTCF-depleted fibroblasts, cohesin cannot be properly recruited to CTCF sites but instead accumulates at transcription start sites of active genes, where the cohesin-loading complex is located. In the absence of both CTCF and Wapl, cohesin accumulates in up to 70 kilobase-long regions at 3′-ends of active genes, in particular if these converge on each other. Changing gene expression modulates the position of these ‘cohesin islands’. These findings indicate that transcription can relocate mammalian cohesin over long distances on DNA, as previously reported for yeast cohesin, that this translocation contributes to positioning cohesin at CTCF sites, and that active genes can be freed from cohesin either by transcription-mediated translocation or by Wapl-mediated release.
                Bookmark

                Author and article information

                Journal
                Proc Natl Acad Sci U S A
                Proc. Natl. Acad. Sci. U.S.A
                pnas
                pnas
                PNAS
                Proceedings of the National Academy of Sciences of the United States of America
                National Academy of Sciences
                0027-8424
                1091-6490
                23 April 2019
                8 April 2019
                8 April 2019
                : 116
                : 17
                : 8149-8154
                Affiliations
                [1] aDipartimento di Fisica e Astronomia “Galileo Galilei,” Sezione Istituto Nazionale di Fisica Nucleare, Università degli Studi di Padova, I-35131 Padova, Italy;
                [2] bSchool of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
                Author notes
                1To whom correspondence should be addressed. Email: davide.michieletto@ 123456ed.ac.uk .

                Edited by Michael L. Klein, Institute of Computational Molecular Science, Temple University, Philadelphia, PA, and approved March 14, 2019 (received for review September 6, 2018)

                Author contributions: E.O. and D. Michieletto designed research; E.O. and D. Michieletto performed research; E.O. and D. Michieletto analyzed data; and E.O., D. Marenduzzo, and D. Michieletto wrote the paper.

                Author information
                http://orcid.org/0000-0003-2186-6869
                Article
                201815394
                10.1073/pnas.1815394116
                6486742
                30962387
                5a00e811-89a9-4f74-b0f1-9c35512f54f5
                Copyright © 2019 the Author(s). Published by PNAS.

                This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).

                History
                Page count
                Pages: 6
                Funding
                Funded by: EC | H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC) 100010663
                Award ID: 648050
                Award Recipient : Davide Marenduzzo Award Recipient : Davide Michieletto
                Funded by: European Cooperation in Science and Technology (COST) 501100000921
                Award ID: CA17139
                Award Recipient : Enzo Orlandini Award Recipient : Davide Michieletto
                Categories
                Physical Sciences
                Biophysics and Computational Biology

                genome topology,smc proteins,topoisomerase,brownian dynamics,entanglements

                Comments

                Comment on this article