23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Salivary Gland Hypofunction in tyrosylprotein sulfotransferase-2 Knockout Mice Is Due to Primary Hypothyroidism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Protein-tyrosine sulfation is a post-translational modification of an unknown number of secreted and membrane proteins mediated by two known Golgi tyrosylprotein sulfotransferases (TPST-1 and TPST-2). We reported that Tpst2-/- mice have mild-moderate primary hypothyroidism, whereas Tpst1-/- mice are euthyroid. While using magnetic resonance imaging (MRI) to look at the thyroid gland we noticed that the salivary glands in Tpst2-/- mice appeared smaller than in wild type mice. This prompted a detailed analysis to compare salivary gland structure and function in wild type, Tpst1-/-, and Tpst2 -/- mice.

          Methodology/Principal Findings

          Quantitative MRI imaging documented that salivary glands in Tpst2-/- females were 30% smaller than wild type or Tpst1-/- mice and that the granular convoluted tubules in Tpst2-/- submandibular glands were less prominent and were almost completely devoid of exocrine secretory granules compared to glands from wild type or Tpst1-/- mice. In addition, pilocarpine–induced salivary flow and salivary α-amylase activity in Tpst2-/- mice of both sexes was substantially lower than in wild type and Tpst1-/- mice. Anti-sulfotyrosine Western blots of salivary gland extracts and saliva showed no differences between wild type, Tpst1-/-, and Tpst2-/- mice, suggesting that the salivary gland hypofunction is due to factor(s) extrinsic to the salivary glands. Finally, we found that all indicators of hypothyroidism (serum T4, body weight) and salivary gland hypofunction (salivary flow, salivary α-amylase activity, histological changes) were restored to normal or near normal by thyroid hormone supplementation.

          Conclusions/Significance

          Our findings conclusively demonstrate that low body weight and salivary gland hypofunction in Tpst2-/- mice is due solely to primary hypothyroidism.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of tyrosylprotein sulfotransferase in Arabidopsis.

          Tyrosine sulfation is a posttranslational modification common in peptides and proteins synthesized by the secretory pathway in most eukaryotes. In plants, this modification is critical for the biological activities of a subset of peptide hormones such as PSK and PSY1. In animals, tyrosine sulfation is catalyzed by Golgi-localized type II transmembrane proteins called tyrosylprotein sulfotransferases (TPSTs). However, no orthologs of animal TPST genes have been found in plants, suggesting that plants have evolved plant-specific TPSTs structurally distinct from their animal counterparts. To investigate the mechanisms of tyrosine sulfation in plants, we purified TPST activity from microsomal fractions of Arabidopsis MM2d cells, and identified a 62-kDa protein that specifically interacts with the sulfation motif of PSY1 precursor peptide. This protein is a 500-aa type I transmembrane protein that shows no sequence similarity to animal TPSTs. A recombinant version of this protein expressed in yeast catalyzed tyrosine sulfation of both PSY1 and PSK precursor polypeptide in vitro, indicating that the newly identified protein is indeed an Arabidopsis (At)TPST. AtTPST is expressed throughout the plant body, and the highest levels of expression are in the root apical meristem. A loss-of-function mutant of AtTPST displayed a marked dwarf phenotype accompanied by stunted roots, pale green leaves, reduction in higher order veins, early senescence, and a reduced number of flowers and siliques. Our results indicate that plants and animals independently acquired tyrosine sulfation enzymes through convergent evolution.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The biology and enzymology of protein tyrosine O-sulfation.

            Eli Moore (2003)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Calsperin is a testis-specific chaperone required for sperm fertility.

              Calnexin (CANX) and calreticulin (CALR) are homologous lectin chaperones located in the endoplasmic reticulum and cooperate to mediate nascent glycoprotein folding. In the testis, calmegin (CLGN) and calsperin (CALR3) are expressed as germ cell-specific counterparts of CANX and CALR, respectively. Here, we show that Calr3(-/-) males produced apparently normal sperm but were infertile because of defective sperm migration from the uterus into the oviduct and defective binding to the zona pellucida. Whereas CLGN was required for ADAM1A/ADAM2 dimerization and subsequent maturation of ADAM3, a sperm membrane protein required for fertilization, we show that CALR3 is a lectin-deficient chaperone directly required for ADAM3 maturation. Our results establish the client specificity of CALR3 and demonstrate that the germ cell-specific CALR-like endoplasmic reticulum chaperones have contrasting functions in the development of male fertility. The identification and understanding of the maturation mechanisms of key sperm proteins will pave the way toward novel approaches for both contraception and treatment of unexplained male infertility.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                7 August 2013
                : 8
                : 8
                : e71822
                Affiliations
                [1 ]Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
                [2 ]Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
                [3 ]Centre for Advanced Imaging, the University of Queensland, Brisbane, Australia
                [4 ]Department of Pathology, University of Illinois College of Medicine, Peoria, Illinois, United States of America
                [5 ]Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
                [6 ]Oklahoma Center of Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
                University of Michigan Medical School, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: ADW KLM. Performed the experiments: ADW JCS YAT. Analyzed the data: ADW YAT DMP KLM. Wrote the manuscript: ADW DMP KLM.

                Article
                PONE-D-13-21372
                10.1371/journal.pone.0071822
                3737198
                23951251
                59efb7ab-cf8a-49cc-8f6e-f13499eb404e
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 23 May 2013
                : 9 July 2013
                Funding
                This work was supported by National Institute of Health Grant HD056022 (to K.L.M.) and institutional funds from the Oklahoma Medical Research Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article