11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Role of nitric oxide in delaying senescence of cut rose flowers and its interaction with ethylene

      , ,
      Scientia Horticulturae
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: not found
          • Article: not found

          Ethylene Biosynthesis and its Regulation in Higher Plants

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nitric oxide functions as a signal in plant disease resistance.

            Recognition of an avirulent pathogen triggers the rapid production of the reactive oxygen intermediates superoxide (O2-) and hydrogen peroxide (H2O2). This oxidative burst drives crosslinking of the cell wall, induces several plant genes involved in cellular protection and defence, and is necessary for the initiation of host cell death in the hypersensitive disease-resistance response. However, this burst is not enough to support a strong disease-resistance response. Here we show that nitric oxide, which acts as a signal in the immune, nervous and vascular systems, potentiates the induction of hypersensitive cell death in soybean cells by reactive oxygen intermediates and functions independently of such intermediates to induce genes for the synthesis of protective natural products. Moreover, inhibitors of nitric oxide synthesis compromise the hypersensitive disease-resistance response of Arabidopsis leaves to Pseudomonas syringae, promoting disease and bacterial growth. We conclude that nitric oxide plays a key role in disease resistance in plants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis.

              Nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) are key signalling molecules produced in response to various stimuli and involved in a diverse range of plant signal transduction processes. Nitric oxide and H(2)O(2) have been identified as essential components of the complex signalling network inducing stomatal closure in response to the phytohormone abscisic acid (ABA). A close inter-relationship exists between ABA and the spatial and temporal production and action of both NO and H(2)O(2) in guard cells. This study shows that, in Arabidopsis thaliana guard cells, ABA-mediated NO generation is in fact dependent on ABA-induced H(2)O(2) production. Stomatal closure induced by H(2)O(2) is inhibited by the removal of NO with NO scavenger, and both ABA and H(2)O(2) stimulate guard cell NO synthesis. Conversely, NO-induced stomatal closure does not require H(2)O(2) synthesis nor does NO treatment induce H(2)O(2) production in guard cells. Tungstate inhibition of the NO-generating enzyme nitrate reductase (NR) attenuates NO production in response to nitrite in vitro and in response to H(2)O(2) and ABA in vivo. Genetic data demonstrate that NR is the major source of NO in guard cells in response to ABA-mediated H(2)O(2) synthesis. In the NR double mutant nia1, nia2 both ABA and H(2)O(2) fail to induce NO production or stomatal closure, but in the nitric oxide synthase deficient Atnos1 mutant, responses to H(2)O(2) are not impaired. Importantly, we show that in the NADPH oxidase deficient double mutant atrbohD/F, NO synthesis and stomatal closure to ABA are severely reduced, indicating that endogenous H(2)O(2) production induced by ABA is required for NO synthesis. In summary, our physiological and genetic data demonstrate a strong inter-relationship between ABA, endogenous H(2)O(2) and NO-induced stomatal closure.
                Bookmark

                Author and article information

                Journal
                Scientia Horticulturae
                Scientia Horticulturae
                Elsevier BV
                03044238
                May 2013
                May 2013
                : 155
                :
                : 30-38
                Article
                10.1016/j.scienta.2013.03.005
                59bac7dd-e45d-47c3-af98-cc97cd218e02
                © 2013
                History

                Comments

                Comment on this article