11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plastic change of prefrontal cortex mediates anxiety-like behaviors associated with chronic pain in neuropathic rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Clinical studies show that anxiety and chronic pain are concomitant. The neural basis for the comorbidity is unclear. The prefrontal cortex (PFC) has been recognized as a critical area for affective disorders and chronic pain modulation. In this study, we examined the role of the PFC in the pathogenesis of anxiety associated with chronic pain in a rat model of neuropathic pain with spare nerve injury (SNI). The SNI rats showed apparent anxiety-like behaviors in both open field (OF) test and elevated-plus maze (EPM) test eight weeks after surgery. Thus, the number of entries to the central area in the OF decreased to 45% (±5%, n = 15) of sham control (n = 17), while the overall motor activity (i.e., total distance) was unaffected. In the EPM, the percentage of entries into the open arms significantly (p < 0.001) decreased in SNI rats (SNI: 12.58 ± 2.7%, n = 15; sham: 30.75 ± 2.82%, n = 17), so did the time spent in the open arms (SNI: 4.35 ± 1.45%, n = 15; Sham: 11.65 ± 2.18%, n = 17). To explore the neural basis for the association between anxiety and chronic pain, local field potentials (LFPs) were recorded from the medial PFC (mPFC) and ventral hippocampus. In SNI rats, there were significantly greater increases in both theta-frequency power in the mPFC and theta-frequency synchronization between the mPFC and ventral hippocampus, when animals were displaying elevated anxiety-like behaviors in avoiding anxiogenic regions in EPM and OF chamber. Western blot analyses showed a significant elevation of serotonin transporter expression in the anxious SNI rats. Inhibition of serotonin transporter effectively alleviated anxiety-like behaviors following sub-chronic (15 days) treatment with systemic citalopram (10 mg/kg/day, intraperitoneally). Moreover, the anxiety-like behaviors in the SNI rats were also suppressed by direct mPFC application of serotonin. Taken together, we conclude that the plasticity of serotonin transmission in the mPFC likely contribute to the promotion of anxiety state associated with neuropathic pain.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: found
          • Article: not found

          Spared nerve injury: an animal model of persistent peripheral neuropathic pain.

          Peripheral neuropathic pain is produced by multiple etiological factors that initiate a number of diverse mechanisms operating at different sites and at different times and expressed both within, and across different disease states. Unraveling the mechanisms involved requires laboratory animal models that replicate as far as possible, the different pathophysiological changes present in patients. It is unlikely that a single animal model will include the full range of neuropathic pain mechanisms. A feature of several animal models of peripheral neuropathic pain is partial denervation. In the most frequently used models a mixture of intact and injured fibers is created by loose ligation of either the whole (Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 1988;33:87-107) or a tight ligation of a part (Seltzer Z, Dubner R, Shir Y. A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 1990;43:205-218) of a large peripheral nerve, or a tight ligation of an entire spinal segmental nerve (Kim SH, Chung JM. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 1992;50:355-363). We have developed a variant of partial denervation, the spared nerve injury model. This involves a lesion of two of the three terminal branches of the sciatic nerve (tibial and common peroneal nerves) leaving the remaining sural nerve intact. The spared nerve injury model differs from the Chung spinal segmental nerve, the Bennett chronic constriction injury and the Seltzer partial sciatic nerve injury models in that the co-mingling of distal intact axons with degenerating axons is restricted, and it permits behavioral testing of the non-injured skin territories adjacent to the denervated areas. The spared nerve injury model results in early ( 6 months), robust (all animals are responders) behavioral modifications. The mechanical (von Frey and pinprick) sensitivity and thermal (hot and cold) responsiveness is increased in the ipsilateral sural and to a lesser extent saphenous territories, without any change in heat thermal thresholds. Crush injury of the tibial and common peroneal nerves produce similar early changes, which return, however to baseline at 7-9 weeks. The spared nerve injury model may provide, therefore, an additional resource for unraveling the mechanisms responsible for the production of neuropathic pain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chronic back pain is associated with decreased prefrontal and thalamic gray matter density.

            The role of the brain in chronic pain conditions remains speculative. We compared brain morphology of 26 chronic back pain (CBP) patients to matched control subjects, using magnetic resonance imaging brain scan data and automated analysis techniques. CBP patients were divided into neuropathic, exhibiting pain because of sciatic nerve damage, and non-neuropathic groups. Pain-related characteristics were correlated to morphometric measures. Neocortical gray matter volume was compared after skull normalization. Patients with CBP showed 5-11% less neocortical gray matter volume than control subjects. The magnitude of this decrease is equivalent to the gray matter volume lost in 10-20 years of normal aging. The decreased volume was related to pain duration, indicating a 1.3 cm3 loss of gray matter for every year of chronic pain. Regional gray matter density in 17 CBP patients was compared with matched controls using voxel-based morphometry and nonparametric statistics. Gray matter density was reduced in bilateral dorsolateral prefrontal cortex and right thalamus and was strongly related to pain characteristics in a pattern distinct for neuropathic and non-neuropathic CBP. Our results imply that CBP is accompanied by brain atrophy and suggest that the pathophysiology of chronic pain includes thalamocortical processes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The structural and functional connectivity of the amygdala: from normal emotion to pathological anxiety.

              The dynamic interactions between the amygdala and the medial prefrontal cortex (mPFC) are usefully conceptualized as a circuit that both allows us to react automatically to biologically relevant predictive stimuli as well as regulate these reactions when the situation calls for it. In this review, we will begin by discussing the role of this amygdala-mPFC circuitry in the conditioning and extinction of aversive learning in animals. We will then relate these data to emotional regulation paradigms in humans. Finally, we will consider how these processes are compromised in normal and pathological anxiety. We conclude that the capacity for efficient crosstalk between the amygdala and the mPFC, which is represented as the strength of the amygdala-mPFC circuitry, is crucial to beneficial outcomes in terms of reported anxiety. Copyright © 2011 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Mol Pain
                Mol Pain
                MPX
                spmpx
                Molecular Pain
                SAGE Publications (Sage CA: Los Angeles, CA )
                1744-8069
                27 June 2018
                2018
                : 14
                : 1744806918783931
                Affiliations
                [1 ]Key Laboratory of Brain Functional Genomics (MOE&STCSM), Shanghai Changning-ECNU Mental Health Center, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
                [2 ]School of Life Sciences, East China Normal University, Shanghai, China
                [3 ]MIND Research Institute, Irvine, CA, USA
                [4 ]Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
                [5 ]Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
                [6 ]NYU-ECNU Institute of Brain and Cognitive Science at New York University Shanghai, Shanghai, China
                Author notes

                Kangning Sang and Chaofei Bao contributed equally to this work.

                [*]Xiao-Wei Dong, Institute of Cognitive Neuroscience, East China Normal University, Old Library Bldg., Room 305, 3663 N.Zhongshan Road, Shanghai 200062, China. Email: zxwdong@ 123456gmail.com
                Article
                10.1177_1744806918783931
                10.1177/1744806918783931
                6077894
                29871537
                59b1f374-6e4a-421c-a13c-e3117de1090a
                © The Author(s) 2018

                Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 28 February 2018
                : 5 May 2018
                : 26 May 2018
                Funding
                Funded by: M.I.N.D. Research Fund, California, FundRef ;
                Funded by: Key Specialist Projects of Shanghai Municipal Commission of Health and Family Planning, FundRef ;
                Award ID: ZK2015B01
                Funded by: the Programs Foundation of Shanghai Municipal Commission of Health and Family Planning, FundRef ;
                Award ID: 201540114
                Categories
                Research Article
                Custom metadata
                January-December 2018

                Molecular medicine
                neuropathic pain,anxiety,prefrontal cortex,serotonin transporter,theta-frequency oscillation,plasticity,rats

                Comments

                Comment on this article