33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Use of Pentaploid Crosses for the Introgression of Amblyopyrum muticum and D-Genome Chromosome Segments Into Durum Wheat

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The wild relatives of wheat provide an important source of genetic variation for wheat improvement. Much of the work in the past aimed at transferring genetic variation from wild relatives into wheat has relied on the exploitation of the ph1b mutant, located on the long arm of chromosome 5B. This mutation allows homologous recombination to occur between chromosomes from related but different genomes, e.g. between the chromosomes of wheat and related chromosomes from a wild relative resulting in the generation of interspecific recombinant chromosomes. However, the ph1b mutant also enables recombination to occur between the homologous genomes of wheat, e.g. A/B, A/D, B/D, resulting in the generation of wheat intergenomic recombinant chromosomes. In this work we report on the presence of wheat intergenomic recombinants in the genomic background of hexaploid wheat/ Amblyopyrum muticum introgression lines. The transfer of genomic rearrangements involving the D-genome through pentaploid crosses provides a strategy by which the D-genome of wheat can be introgressed into durum wheat. Hence, a pentaploid crossing strategy was used to transfer D-genome segments, introgressed with either the A- and/or the B-genome, into the tetraploid background of two durum wheat genotypes Karim and Om Rabi 5 in either the presence or absence of different Am. muticum (2n = 2x = 14, TT) introgressions. Introgressions were monitored in backcross generations to the durum wheat parents via multi-color genomic in situ hybridization (mc-GISH). Tetraploid lines carrying homozygous D-genome introgressions, as well as simultaneous homozygous D- and T-genome introgressions, were developed. Introgression lines were characterized via Kompetitive Allele-Specific PCR (KASP) markers and multi-color fluorescence in situ hybridization (FISH). Results showed that new wheat sub-genomic translocations were generated at each generation in progeny that carried any Am. muticum chromosome introgression irrespective of the linkage group that the segment was derived from. The highest frequencies of homologous recombination were observed between the A- and the D-genomes. Results indicated that the genotype Karim had a higher tolerance to genomic rearrangements and T-genome introgressions compared to Om Rabi 5. This indicates the importance of the selection of the parental genotype when attempting to transfer/develop introgressions into durum wheat from pentaploid crosses.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis.

          Hybrids derived from wheat (Triticum aestivum L.) × rye (Secale cereale L.) have been widely studied because of their important roles in wheat cultivar improvement. Repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 are usually used as probes in fluorescence in situ hybridization (FISH) analysis of wheat, rye, and hybrids derived from wheat × rye. Usually, some of these repetitive sequences for FISH analysis were needed to be amplified from a bacterial plasmid, extracted from bacterial cells, and labeled by nick translation. Therefore, the conventional procedure of probe preparation using these repetitive sequences is time-consuming and labor-intensive. In this study, some appropriate oligonucleotide probes have been developed which can replace the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 in FISH analysis of wheat, rye, and hybrids derived from wheat × rye. These oligonucleotides can be synthesized easily and cheaply. Therefore, FISH analysis of wheat and hybrids derived from wheat × rye using these oligonucleotide probes becomes easier and more economical.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize.

            Study of the maize (Zea mays L.) somatic chromosomes (2n = 20) has been difficult because of a lack of distinguishing characteristics. To identify all maize chromosomes, a multicolor fluorescence in situ hybridization procedure was developed. The procedure uses tandemly repeated DNA sequences to generate a distinctive banding pattern for each of the 10 chromosomes. Fluorescence in situ hybridization screening trials of nonsubtracted or subtracted PCR libraries resulted in the isolation of microsatellite 1-26-2, subtelomeric 4-12-1, and 5S rRNA 2-3-3 clones. These three probes, plus centromeric satellite 4 (Cent4), centromeric satellite C (CentC), knob, nucleolus-organizing region (NOR), pMTY9ER telomere-associated sequence, and tandemly repeated DNA sequence 1 (TR-1) were used as a mixture for hybridization to root-tip chromosomes. All 10 chromosomes were identified by the banding and color patterns in the 14 examined lines. There was significant quantitative variation among lines for the knob, microsatellite, TR-1, and CentC signals. The same probe mixture identifies meiotic pachytene, late prophase I, and metaphase I chromosomes. The procedure could facilitate the study of chromosomal structure and behavior and be adapted for other plant species.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Allopolyploidy--a shaping force in the evolution of wheat genomes.

              Recent studies have shown that allopolyploidy accelerates genome evolution in wheat in two ways: (1) allopolyploidization triggers rapid genome changes (revolutionary changes) through the instantaneous generation of a variety of cardinal genetic and epigenetic alterations, and (2) the allopolyploid condition facilitates sporadic genomic changes during the life of the species (evolutionary changes) that are not attainable at the diploid level. The revolutionary changes comprise (1) non-random elimination of coding and non-coding DNA sequences, (2) epigenetic changes such as DNA methylation of coding and non-coding DNA leading, among others, to gene silencing, (3) activation of genes and retroelements which in turn alters the expression of adjacent genes. These highly reproducible changes occur in the F1 hybrids or in the first generation(s) of the nascent allopolyploids and were similar to those that occurred twice in nature: first in the formation of allotetraploid wheat (approximately 0.5 million years ago) and second in the formation of hexaploid wheat (approximately 10,000 years ago). Elimination of non-coding sequences from one of the two homoeologous pairs in tetraploids and from two homoeologous pairs in hexaploids, augments the differentiation of homoeologous chromosomes at the polyploid level, thus providing the physical basis for the diploid-like meiotic behavior of allopolyploid wheat. Regulation of gene expression may lead to improved inter-genomic interactions. Gene inactivation brings about rapid diploidization while activation of genes through demethylation or through transcriptional activation of retroelements altering the expression of adjacent genes, leads to novel expression patterns. The evolutionary changes comprise (1) horizontal inter-genomic transfer of chromosome segments between the constituent genomes, (2) production of recombinant genomes through hybridization and introgression between different allopolyploid species or, more seldom, between allopolyploids and diploids, and (3) mutations. These phenomena, emphasizing the plasticity of the genome with regards to both structure and function, might improve the adaptability of the newly formed allopolyploids and facilitate their rapid and successful establishment in nature. Copyright 2005 S. Karger AG, Basel.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                18 September 2019
                2019
                : 10
                : 1110
                Affiliations
                [1] 1Nottingham BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus , Loughborough, Leicestershire, United Kingdom
                [2] 2International Maize and Wheat Improvement Center (CIMMYT) Mexico , Mexico City, Mexico
                [3] 3Division of Plant Sciences, University of Missouri , Columbia, MO, United States
                Author notes

                Edited by: Agata Gadaleta, University of Bari Aldo Moro, Italy

                Reviewed by: Daryl LaVerne Klindworth, Edward T. Schafer Agricultural Research Center, United States; Assaf Distelfeld, Tel Aviv University, Israel; Peng Zhang, University of Sydney, Australia

                *Correspondence: Julie King, Julie.King@ 123456nottingham.ac.uk

                This article was submitted to Plant Breeding, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2019.01110
                6760530
                31620148
                599d7dbd-9c4b-4589-93f3-348d3f99e4fe
                Copyright © 2019 Othmeni, Grewal, Hubbart-Edwards, Yang, Scholefield, Ashling, Yahyaoui, Gustafson, Singh, King and King

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 June 2019
                : 13 August 2019
                Page count
                Figures: 3, Tables: 4, Equations: 0, References: 56, Pages: 11, Words: 5807
                Funding
                Funded by: Biotechnology and Biological Sciences Research Council 10.13039/501100000268
                Award ID: BB/P016855/1
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                durum wheat,pentaploid crosses,amblyopyrum muticum,introgression,in situ hybridization,kompetitive allele-specific pcr markers

                Comments

                Comment on this article