22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Escherichia coli BdcA controls biofilm dispersal in Pseudomonas aeruginosa and Rhizobium meliloti

      research-article
      1 , 1 , 1 ,
      BMC Research Notes
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Previously we showed that BdcA controls Escherichia coli biofilm dispersal by binding the ubiquitous bacterial signal cyclic diguanylate (c-di-GMP); upon reducing the concentration of c-di-GMP, the cell shifts to the planktonic state by increasing motility, decreasing aggregation, and decreasing production of biofilm adhesins.

          Findings

          Here we report that BdcA also increases biofilm dispersal in other Gram-negative bacteria including Pseudomonas aeruginosa, Pseudomonas fluorescens, and Rhizobium meliloti. BdcA binds c-di-GMP in these strains and thereby reduces the effective c-di-GMP concentrations as demonstrated by increases in swimming motility and swarming motility as well as by a reduction in extracellular polysaccharide production. We also develop a method to displace existing biofilms by adding BdcA via conjugation from E. coli in mixed-species biofilms.

          Conclusion

          Since BdcA shows the ability to control biofilm dispersal in diverse bacteria, BdcA has the potential to be used as a tool to disperse biofilms for engineering and medical applications.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Lung infections associated with cystic fibrosis.

          While originally characterized as a collection of related syndromes, cystic fibrosis (CF) is now recognized as a single disease whose diverse symptoms stem from the wide tissue distribution of the gene product that is defective in CF, the ion channel and regulator, cystic fibrosis transmembrane conductance regulator (CFTR). Defective CFTR protein impacts the function of the pancreas and alters the consistency of mucosal secretions. The latter of these effects probably plays an important role in the defective resistance of CF patients to many pathogens. As the modalities of CF research have changed over the decades from empirical histological studies to include biophysical measurements of CFTR function, the clinical management of this disease has similarly evolved to effectively address the ever-changing spectrum of CF-related infectious diseases. These factors have led to the successful management of many CF-related infections with the notable exception of chronic lung infection with the gram-negative bacterium Pseudomonas aeruginosa. The virulence of P. aeruginosa stems from multiple bacterial attributes, including antibiotic resistance, the ability to utilize quorum-sensing signals to form biofilms, the destructive potential of a multitude of its microbial toxins, and the ability to acquire a mucoid phenotype, which renders this microbe resistant to both the innate and acquired immunologic defenses of the host.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants.

            Random transposon insertion libraries have proven invaluable in studying bacterial genomes. Libraries that approach saturation must be large, with multiple insertions per gene, making comprehensive genome-wide scanning difficult. To facilitate genome-scale study of the opportunistic human pathogen Pseudomonas aeruginosa strain PA14, we constructed a nonredundant library of PA14 transposon mutants (the PA14NR Set) in which nonessential PA14 genes are represented by a single transposon insertion chosen from a comprehensive library of insertion mutants. The parental library of PA14 transposon insertion mutants was generated by using MAR2xT7, a transposon compatible with transposon-site hybridization and based on mariner. The transposon-site hybridization genetic footprinting feature broadens the utility of the library by allowing pooled MAR2xT7 mutants to be individually tracked under different experimental conditions. A public, internet-accessible database (the PA14 Transposon Insertion Mutant Database, http://ausubellab.mgh.harvard.edu/cgi-bin/pa14/home.cgi) was developed to facilitate construction, distribution, and use of the PA14NR Set. The usefulness of the PA14NR Set in genome-wide scanning for phenotypic mutants was validated in a screen for attachment to abiotic surfaces. Comparison of the genes disrupted in the PA14 transposon insertion library with an independently constructed insertion library in P. aeruginosa strain PAO1 provides an estimate of the number of P. aeruginosa essential genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans.

              pRK212.2, a derivative of the broad host range plasmid RK2, contains two EcoRI cleavage fragments, A and B, neither of which can replicate by itself in Escherichia coli. Fragment A (41.7 kilobases), but not fragment B (14.4 kilobases), can be cloned by insertion into the unrelated plasmids mini-F and ColE1. Fragment B contains the origin of replication and the ampicillin-resistance determinant of RK2. Transformation of E. coli cells containing the mini-F-fragment A hybrid plasmid with fragment B DNA results in the recircularization and replication of fragment B as a nonmobilizable plasmid (pRK2067) with the copy number and incompatibility properties of RK2. Fragment B cannot be cloned in the absence of fragment A because the latter fragment suppresses a function, specified by fragment B, that results in loss of host cell viability. A small segment (2.4 kilobases) of fragment B that contains the RK2 origin of replication but no longer affects host cell growth in the absence of fragment A had been cloned previously by insertion into a ColE1 plasmid. This hybrid plasmid, designated pRK256, will replicate in E. coli polA mutants only when a fragment A-bearing helper plasmid is present. These results demonstrate that the potentially lethal function specified by fragment B of RK2 is not necessary for replication and that at least one trans-acting function is directly involved in RK2 replication.
                Bookmark

                Author and article information

                Journal
                BMC Res Notes
                BMC Research Notes
                BioMed Central
                1756-0500
                2011
                26 October 2011
                : 4
                : 447
                Affiliations
                [1 ]Department of Chemical Engineering, Texas A & M University, College Station, TX 77843-3122, USA
                Article
                1756-0500-4-447
                10.1186/1756-0500-4-447
                3214192
                22029875
                5999a80d-cac0-41c5-9a81-9a13067aeb04
                Copyright ©2011 Wood et al; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 June 2011
                : 26 October 2011
                Categories
                Short Report

                Medicine
                Medicine

                Comments

                Comment on this article