11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metabolic Plasticity of Melanoma Cells and Their Crosstalk With Tumor Microenvironment

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cutaneous melanoma (CM) is a highly aggressive and drug resistant solid tumor, showing an impressive metabolic plasticity modulated by oncogenic activation. In particular, melanoma cells can generate adenosine triphosphate (ATP) during cancer progression by both cytosolic and mitochondrial compartments, although CM energetic request mostly relies on glycolysis. The upregulation of glycolysis is associated with constitutive activation of BRAF/MAPK signaling sustained by BRAF V600E kinase mutant. In this scenario, the growth and progression of CM are strongly affected by melanoma metabolic changes and interplay with tumor microenvironment (TME) that sustain tumor development and immune escape. Furthermore, CM metabolic plasticity can induce a metabolic adaptive response to BRAF/MEK inhibitors (BRAFi/MEKi), associated with the shift from glycolysis toward oxidative phosphorylation (OXPHOS). Therefore, in this review article we survey the metabolic alterations and plasticity of CM, its crosstalk with TME that regulates melanoma progression, drug resistance and immunosurveillance. Finally, we describe hallmarks of melanoma therapeutic strategies targeting the shift from glycolysis toward OXPHOS.

          Related collections

          Most cited references174

          • Record: found
          • Abstract: found
          • Article: not found

          LDHA-Associated Lactic Acid Production Blunts Tumor Immunosurveillance by T and NK Cells.

          Elevated lactate dehydrogenase A (LDHA) expression is associated with poor outcome in tumor patients. Here we show that LDHA-associated lactic acid accumulation in melanomas inhibits tumor surveillance by T and NK cells. In immunocompetent C57BL/6 mice, tumors with reduced lactic acid production (Ldha(low)) developed significantly slower than control tumors and showed increased infiltration with IFN-γ-producing T and NK cells. However, in Rag2(-/-)γc(-/-) mice, lacking lymphocytes and NK cells, and in Ifng(-/-) mice, Ldha(low) and control cells formed tumors at similar rates. Pathophysiological concentrations of lactic acid prevented upregulation of nuclear factor of activated T cells (NFAT) in T and NK cells, resulting in diminished IFN-γ production. Database analyses revealed negative correlations between LDHA expression and T cell activation markers in human melanoma patients. Our results demonstrate that lactic acid is a potent inhibitor of function and survival of T and NK cells leading to tumor immune escape.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lactate Metabolism in Human Lung Tumors

            Cancer cells consume glucose and secrete lactate in culture. It is unknown whether lactate contributes to energy metabolism in living tumors. We previously reported that human non-small cell lung cancers (NSCLC) oxidize glucose in the tricarboxylic acid (TCA) cycle. Here we show that lactate is also a TCA cycle carbon source for NSCLC. In human NSCLC, evidence of lactate utilization was most apparent in tumors with high 18 fluorodeoxyglucose uptake and aggressive oncological behavior. Infusing human NSCLC patients with 13 C-lactate revealed extensive labeling of TCA cycle metabolites. In mice, deleting monocarboxylate transporter-1 (MCT1) from tumor cells eliminated lactate-dependent metabolite labeling, confirming tumor-cell autonomous lactate uptake. Strikingly, directly comparing lactate and glucose metabolism in vivo indicated that lactate's contribution to the TCA cycle predominates. The data indicate that tumors, including bona fide human NSCLC, can use lactate as a fuel in vivo. Human non-small cell lung cancer preferentially utilizes lactate over glucose to fuel TCA cycle and sustain tumor metabolism in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hypoxia signalling in cancer and approaches to enforce tumour regression.

              Tumour cells emerge as a result of genetic alteration of signal circuitries promoting cell growth and survival, whereas their expansion relies on nutrient supply. Oxygen limitation is central in controlling neovascularization, glucose metabolism, survival and tumour spread. This pleiotropic action is orchestrated by hypoxia-inducible factor (HIF), which is a master transcriptional factor in nutrient stress signalling. Understanding the role of HIF in intracellular pH (pH(i)) regulation, metabolism, cell invasion, autophagy and cell death is crucial for developing novel anticancer therapies. There are new approaches to enforce necrotic cell death and tumour regression by targeting tumour metabolism and pH(i)-control systems.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                22 May 2020
                2020
                : 10
                : 722
                Affiliations
                [1] 1Department of Public Health, University of Naples Federico II , Naples, Italy
                [2] 2Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro , Catanzaro, Italy
                [3] 3Department of Advanced Biomedical Sciences, University of Naples Federico II , Naples, Italy
                [4] 4Institute of Biostructures and Bioimages, National Research Council , Naples, Italy
                [5] 5Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II , Naples, Italy
                Author notes

                Edited by: Sara Rodriguez-Enriquez, Instituto Nacional de Cardiología, Mexico

                Reviewed by: Philippe Marchetti, INSERM U1172 Center de Recherche Jean Pierre Aubert, France; Helen Rizos, Macquarie University, Australia

                *Correspondence: Angelica Avagliano angelica.avagliano@ 123456unina.it

                This article was submitted to Cancer Metabolism, a section of the journal Frontiers in Oncology

                Article
                10.3389/fonc.2020.00722
                7256186
                32528879
                5991aea1-f500-4a3d-982f-828dd5395b43
                Copyright © 2020 Avagliano, Fiume, Pelagalli, Sanità, Ruocco, Montagnani and Arcucci.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 February 2020
                : 16 April 2020
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 243, Pages: 21, Words: 17927
                Categories
                Oncology
                Review

                Oncology & Radiotherapy
                cutaneous melanoma,tumor microenvironment,metabolic alterations,oxphos,therapeutic strategies

                Comments

                Comment on this article