13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      LHPP impedes energy metabolism by inducing ubiquitin-mediated degradation of PKM2 in glioblastoma.

      Read this article at

      ScienceOpenPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) is a new-found tumor suppressor in a variety of tumors. While, it is still unknown about its role in glioma. In this study, we found that LHPP is abnormally decreasing or absent in glioblastoma, and the low expression of LHPP is associated with poor median survival in glioma patients. Functional assay revealed that LHPP-overexpression significantly inhibited U87MG and U118MG growth in vitro and in vivo. As to the mechanism, mass-spectrometric analysis indicated that the LHPP interacting proteins were mainly enriched in regulation of energy metabolism, including Carbon metabolism, Oxidative phosphorylation, and Glycolysis. Seahorse assay and metabolites detection confirmed that LHPP-overexpression obviously impeded glycolysis and respiration in U87MG and U118MG cells. For the further study, western blot assay showed that the protein level of PKM2 at dimeric, tetrameric, and total protein, were all decreased significantly, and its enzymatic activity was decreased as well. ChIP and RNAseq integrated analysis indicated that the decreased protein level of PKM2 was independent of PKM2 transcription, and LHPP did not reprogram transcription level of metabolic genome. Co-IP and immunofluorescence assay manifested that LHPP interacted with PKM2, and this interaction interfered the protein stability, then induced ubiquitin-mediated degradation of PKM2. Rescue assay confirmed that restoring the expression of PKM2 effectively reversed the restrained energy metabolism and the inhibited cancer cell growth caused by LHPP-overexpression in U87MG and U118MG cells. Taking together, we demonstrated that LHPP impedes the glycolysis and respiration during energy metabolic process via inducing ubiquitin-mediated degradation of PKM2, thus inhibits the growth of glioblastoma.

          Related collections

          Author and article information

          Journal
          Am J Cancer Res
          American journal of cancer research
          2156-6976
          2156-6976
          2021
          : 11
          : 4
          Affiliations
          [1 ] The Second School of Clinical Medicine, Southern Medical University Guangzhou 510000, P. R. China.
          [2 ] Department of Neurosurgery, The Seventh Medical Center of General Hospital of PLA Beijing 100010, P. R. China.
          [3 ] The Department of Neurosurgery, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China Chengdu 610072, P. R. China.
          [4 ] The Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University Guangzhou 510000, P. R. China.
          Article
          8085851
          33948363
          5974c7e0-f5ce-4fef-aa33-aa39d86c4c47
          History

          glioblastoma,LHPP,PKM2,energy metabolism,ubiquitination degradation

          Comments

          Comment on this article