1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A united risk model of 11 immune‑related gene pairs and clinical stage for prediction of overall survival in clear cell renal cell carcinoma patients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cancer. Currently, we lack effective risk models for the prognosis of ccRCC patients. Given the significant role of cancer immunity in ccRCC, we aimed to establish a novel united risk model including clinical stage and immune-related gene pairs (IRGPs) to assess the prognosis. The gene expression profile and clinical data of ccRCC patients from The Cancer Genome Atlas and Arrayexpress were divided into training cohort (n = 381), validation cohort 1 (n = 156), and validation cohort 2 (n = 101). Through univariate Cox regression analysis and Least Absolute Shrinkage and Selection Operator analysis, 11 IRGPs were obtained. After further analysis, it was found that clinical stage could be an independent prognostic factor; hence, we used it to construct a united prognostic model with 11 IRGPs. Based on this model, patients were divided into high-risk and low-risk groups. In Kaplan–Meier analysis, a significant difference was observed in overall survival (OS) among all three cohorts (p < 0.001). The calibration curve revealed that the signature model is in high accordance with the observed values of each data cohort. The 1-year, 3-year, and 5-year receiver operating characteristic curves of each data cohort showed better performance than only IRGP signatures. The results of immune infiltration analysis revealed significantly (p < 0.05) higher abundance of macrophages M0, T follicular helper cells, and other tumor infiltrating cells. In summary, we successfully established a united prognostic risk model, which can effectively assess the OS of ccRCC patients.

          Graphical Abstract

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries

          This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions. There will be an estimated 18.1 million new cancer cases (17.0 million excluding nonmelanoma skin cancer) and 9.6 million cancer deaths (9.5 million excluding nonmelanoma skin cancer) in 2018. In both sexes combined, lung cancer is the most commonly diagnosed cancer (11.6% of the total cases) and the leading cause of cancer death (18.4% of the total cancer deaths), closely followed by female breast cancer (11.6%), prostate cancer (7.1%), and colorectal cancer (6.1%) for incidence and colorectal cancer (9.2%), stomach cancer (8.2%), and liver cancer (8.2%) for mortality. Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality). Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality. The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors. It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries. The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts. CA: A Cancer Journal for Clinicians 2018;0:1-31. © 2018 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Hallmarks of Cancer: The Next Generation

            The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cancer-related inflammation.

              The mediators and cellular effectors of inflammation are important constituents of the local environment of tumours. In some types of cancer, inflammatory conditions are present before a malignant change occurs. Conversely, in other types of cancer, an oncogenic change induces an inflammatory microenvironment that promotes the development of tumours. Regardless of its origin, 'smouldering' inflammation in the tumour microenvironment has many tumour-promoting effects. It aids in the proliferation and survival of malignant cells, promotes angiogenesis and metastasis, subverts adaptive immune responses, and alters responses to hormones and chemotherapeutic agents. The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.
                Bookmark

                Author and article information

                Journal
                Bioengineered
                Bioengineered
                Bioengineered
                Taylor & Francis
                2165-5979
                2165-5987
                24 July 2021
                2021
                24 July 2021
                : 12
                : 1
                : 4259-4277
                Affiliations
                [0001]Department of Urology, Shengjing Hospital of China Medical University; , Shenyang, Liaoning, People’s Republic of China
                Author notes
                CONTACT Xiaonan Chen chenxn@ 123456cmu.edu.cn Department of Urology, Shengjing Hospital of China Medical University; , No. 36 Sanhao Street, Shenyang, Liaoning 110004, People’s Republic of China
                Article
                1955558
                10.1080/21655979.2021.1955558
                8806637
                34304692
                5963d1f5-9256-40a8-acbc-9dfe056199d9
                © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 14, Tables: 2, References: 42, Pages: 19
                Categories
                Research Article
                Research Paper

                Biomedical engineering
                clear cell renal cell carcinoma,immune-related gene pairs,prognostic signature,the cancer genome atlas,arrayexpress,irgps

                Comments

                Comment on this article