51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Translation Regulatory Subunit eIF3f Controls the Kinase-Dependent mTOR Signaling Required for Muscle Differentiation and Hypertrophy in Mouse

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The mTORC1 pathway is required for both the terminal muscle differentiation and hypertrophy by controlling the mammalian translational machinery via phosphorylation of S6K1 and 4E-BP1. mTOR and S6K1 are connected by interacting with the eIF3 initiation complex. The regulatory subunit eIF3f plays a major role in muscle hypertrophy and is a key target that accounts for MAFbx function during atrophy. Here we present evidence that in MAFbx-induced atrophy the degradation of eIF3f suppresses S6K1 activation by mTOR, whereas an eIF3f mutant insensitive to MAFbx polyubiquitination maintained persistent phosphorylation of S6K1 and rpS6. During terminal muscle differentiation a conserved TOS motif in eIF3f connects mTOR/raptor complex, which phosphorylates S6K1 and regulates downstream effectors of mTOR and Cap-dependent translation initiation. Thus eIF3f plays a major role for proper activity of mTORC1 to regulate skeletal muscle size.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          TOR, a Central Controller of Cell Growth

          Cell, 103(2), 253-262
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Protein structure modeling with MODELLER.

            Genome sequencing projects have resulted in a rapid increase in the number of known protein sequences. In contrast, only about one-hundredth of these sequences have been characterized using experimental structure determination methods. Computational protein structure modeling techniques have the potential to bridge this sequence-structure gap. This chapter presents an example that illustrates the use of MODELLER to construct a comparative model for a protein with unknown structure. Automation of similar protocols (correction of protcols) has resulted in models of useful accuracy for domains in more than half of all known protein sequences.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Skeletal muscle hypertrophy and atrophy signaling pathways.

              Skeletal muscle hypertrophy is defined as an increase in muscle mass, which in the adult animal comes as a result of an increase in the size, as opposed to the number, of pre-existing skeletal muscle fibers. The protein growth factor insulin-like growth factor 1 (IGF-1) has been demonstrated to be sufficient to induce skeletal muscle hypertrophy. Over the past few years, signaling pathways which are activated by IGF-1, and which are responsible for regulating protein synthesis pathways, have been defined. More recently, it has been show that IGF-1 can also block the transcriptional upregulation of key mediators of skeletal muscle atrophy, the ubiquitin-ligases MuRF1 and MAFbx (also called Atrogin-1). Further, it has been demonstrated recently that activation of the NF-kappaB transcription pathway, activated by cachectic factors such as TNFalpha, is sufficient to induce skeletal muscle atrophy, and this atrophy occurs in part via NF-kappaB-mediated upregulation of MuRF1. Further work has demonstrated a trigger for MAFbx expression upon treatment with TNFalpha--the p38 MAPK pathway. This review will focus on the recent progress in the understanding of molecular signalling, which governs skeletal muscle atrophy and hypertrophy, and the known instances of cross-regulation between the two systems.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                1 February 2010
                : 5
                : 2
                : e8994
                Affiliations
                [1 ]Laboratoire de Génomique Fonctionnelle et Myogenèse, UMR866 Différenciation Cellulaire et Croissance, SupAgro-INRA, Montpellier, France
                [2 ]Biologie et Bioinformatique des Systèmes de Signalisation, UMR Physiologie de la Reproduction et des Comportements, INRA, Nouzilly, France
                [3 ]Equipe Remodelage Musculaire et Signalisation, UMR866 Différenciation Cellulaire et Croissance, SupAgro-INRA, Montpellier, France
                Roswell Park Cancer Institute, United States of America
                Author notes

                Conceived and designed the experiments: AC MPL AP SAL. Performed the experiments: AC KC MPL LAT AMJS. Analyzed the data: AC MPL AP SAL. Contributed reagents/materials/analysis tools: SAL. Wrote the paper: AC AP SAL.

                [¤]

                Current address: Université de Montpellier - Sud de France, Montpellier, France

                Article
                09-PONE-RA-13904R1
                10.1371/journal.pone.0008994
                2813880
                20126553
                590f7b3d-b9f5-4cc2-a1a6-03de78afb5cd
                Csibi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 29 October 2009
                : 5 January 2010
                Page count
                Pages: 14
                Categories
                Research Article
                Biochemistry/Cell Signaling and Trafficking Structures
                Cell Biology/Cell Signaling
                Cell Biology/Developmental Molecular Mechanisms
                Computational Biology/Protein Structure Prediction
                Genetics and Genomics/Gene Function
                Molecular Biology/Translational Regulation
                Physiology/Cell Signaling
                Physiology/Muscle and Connective Tissue

                Uncategorized
                Uncategorized

                Comments

                Comment on this article