0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Validation of an Analytical Workflow for the Analysis of Pesticide and Emerging Organic Contaminant Residues in Paddy Soil and Rice

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce

          A simple, fast, and inexpensive method for the determination of pesticide residues in fruits and vegetables is introduced. The procedure involves initial single-phase extraction of 10 g sample with 10 mL acetonitrile, followed by liquid–liquid partitioning formed by addition of 4 g anhydrous MgSO4 plus 1 g NaCl. Removal of residual water and cleanup are performed simultaneously by using a rapid procedure called dispersive solid-phase extraction (dispersive-SPE), in which 150 mg anhydrous MgSO4 and 25 mg primary secondary amine (PSA) sorbent are simply mixed with 1 mL acetonitrile extract. The dispersive-SPE with PSA effectively removes many polar matrix components, such as organic acids, certain polar pigments, and sugars, to some extent from the food extracts. Gas chromatography/mass spectrometry (GC/MS) is then used for quantitative and confirmatory analysis of GC-amenable pesticides. Recoveries between 85 and 101% (mostly >95%) and repeatabilities typically <5% have been achieved for a wide range of fortified pesticides, including very polar and basic compounds such as methamidophos, acephate, omethoate, imazalil, and thiabendazole. Using this method, a single chemist can prepare a batch of 6 previously chopped samples in <30 min with approximately $1 (U.S.) of materials per sample.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Pesticide residues in European agricultural soils – A hidden reality unfolded

            Pesticide use is a major foundation of the agricultural intensification observed over the last few decades. As a result, soil contamination by pesticide residues has become an issue of increasing concern due to some pesticides' high soil persistence and toxicity to non-target species. In this study, the distribution of 76 pesticide residues was evaluated in 317 agricultural topsoil samples from across the European Union. The soils were collected in 2015 and originated from 11 EU Member States and 6 main cropping systems. Over 80% of the tested soils contained pesticide residues (25% of samples had 1 residue, 58% of samples had mixtures of two or more residues), in a total of 166 different pesticide combinations. Glyphosate and its metabolite AMPA, DDTs (DDT and its metabolites) and the broad-spectrum fungicides boscalid, epoxiconazole and tebuconazole were the compounds most frequently found in soil samples and the compounds found at the highest concentrations. These compounds occasionally exceeded their predicted environmental concentrations in soil but were below the respective toxic endpoints for standard in-soil organisms. Maximum individual pesticide content assessed in a soil sample was 2.05 mg kg-1 while maximum total pesticide content was 2.87 mg kg-1. This study reveals that the presence of mixtures of pesticide residues in soils are the rule rather than the exception, indicating that environmental risk assessment procedures should be adapted accordingly to minimize related risks to soil life and beyond. This information can be used to implement monitoring programs for pesticide residues in soil and to trigger toxicity assessments of mixtures of pesticide residues on a wider range of soil species in order to perform more comprehensive and accurate risk assessments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Currently and recently used pesticides in Central European arable soils.

              Although large amounts of pesticides are used annually and a majority enters the soil to form short- or long-term residues, extensive soil surveys for currently used pesticides (CUPs) are scarce. To determine the status of CUPs' occurrence in arable land in Central Europe, 51 CUPs and 9 transformation products (TPs) were analysed in 75 arable soils in the Czech Republic (CR) several months after the last pesticide application. Moreover, two banned triazines (simazine and atrazine) and their TPs were analysed because of their frequent detection in CR waters. Multi-residue pesticide analysis on LC-MS/MS after soil QuEChERS extraction was used. The soils contained multiple pesticide residues frequently (e.g. 51% soils with ≥5 pesticides). The levels were also noticeable (e.g. 36% soils with ≥3 pesticides exceeding the threshold of 0.01mg/kg). After triazine herbicides (89% soils), conazole fungicides showed the second most frequent occurrence (73% soils) and also high levels (53% soils with total conazoles above 0.01mg/kg). Frequent occurrence was found also for chloroacetanilide TPs (25% of soils), fenpropidin (20%) and diflufenican (17%). With the exception of triazines' negative correlation to soil pH, no clear relationships were found between pesticide occurrence and soil properties. Association of simazine TPs with terbuthylazine and its target crops proved the frequent residues of this banned compound originate from terbuthylazine impurities. In contrast, frequent atrazine-2-hydroxy residue is probably a legacy of high atrazine usage in the past. The occurrence and levels of compounds were closely associated with their solubility, hydrophobicity and half-life. The results showed links to CR water-monitoring findings. This study represents the first extensive survey of multiple pesticide residues in Central European arable soils, including an insight into their relationships to site and pesticide properties.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Agricultural and Food Chemistry
                J. Agric. Food Chem.
                American Chemical Society (ACS)
                0021-8561
                1520-5118
                March 24 2021
                January 11 2021
                March 24 2021
                : 69
                : 11
                : 3298-3306
                Affiliations
                [1 ]Institute of Environmental Sciences, Boğaziçi University, Bebek, Istanbul 34342, Turkey
                Article
                10.1021/acs.jafc.0c06111
                33427464
                58f7573c-f06c-4b4f-a724-e74fa5182dab
                © 2021
                History

                Comments

                Comment on this article