2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Emerging Role of Long Non-Coding RNAs in Diabetic Vascular Complications

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic metabolic disorders such as obesity and diabetes are associated with accelerated rates of macrovascular and microvascular complications, which are leading causes of morbidity and mortality worldwide. Further understanding of the underlying molecular mechanisms can aid in the development of novel drug targets and therapies to manage these disorders more effectively. Long non-coding RNAs (lncRNAs) that do not have protein-coding potential are expressed in a tissue- and species-specific manner and regulate diverse biological processes. LncRNAs regulate gene expression in cis or in trans through various mechanisms, including interaction with chromatin-modifying proteins and other regulatory proteins and via posttranscriptional mechanisms, including acting as microRNA sponges or as host genes of microRNAs. Emerging evidence suggests that major pathological factors associated with diabetes such as high glucose, free fatty acids, proinflammatory cytokines, and growth factors can dysregulate lncRNAs in inflammatory, cardiac, vascular, and renal cells leading to altered expression of key inflammatory genes and fibrotic genes associated with diabetic vascular complications. Here we review recent reports on lncRNA characterization, functions, and mechanisms of action in diabetic vascular complications and translational approaches to target them. These advances can provide new insights into the lncRNA-dependent actions and mechanisms underlying diabetic vascular complications and uncover novel lncRNA-based biomarkers and therapies to reduce disease burden and mortality.

          Related collections

          Most cited references138

          • Record: found
          • Abstract: found
          • Article: not found

          Gene regulation by long non-coding RNAs and its biological functions

          Evidence accumulated over the past decade shows that long non-coding RNAs (lncRNAs) are widely expressed and have key roles in gene regulation. Recent studies have begun to unravel how the biogenesis of lncRNAs is distinct from that of mRNAs and is linked with their specific subcellular localizations and functions. Depending on their localization and their specific interactions with DNA, RNA and proteins, lncRNAs can modulate chromatin function, regulate the assembly and function of membraneless nuclear bodies, alter the stability and translation of cytoplasmic mRNAs and interfere with signalling pathways. Many of these functions ultimately affect gene expression in diverse biological and physiopathological contexts, such as in neuronal disorders, immune responses and cancer. Tissue-specific and condition-specific expression patterns suggest that lncRNAs are potential biomarkers and provide a rationale to target them clinically. In this Review, we discuss the mechanisms of lncRNA biogenesis, localization and functions in transcriptional, post-transcriptional and other modes of gene regulation, and their potential therapeutic applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional Classification and Experimental Dissection of Long Noncoding RNAs

            Over the last decade, it has been increasingly demonstrated that the genomes of many species are pervasively transcribed, resulting in the production of numerous long noncoding RNAs (lncRNAs). At the same time, it is now appreciated that many types of DNA regulatory elements, such as enhancers and promoters, regularly initiate bidirectional transcription. Thus, discerning functional noncoding transcripts from a vast transcriptome is a paramount priority, and challenge, for the lncRNA field. In this review, we aim to provide a conceptual and experimental framework for classifying and elucidating lncRNA function. We categorize lncRNA loci into those that regulate gene expression in cis versus those that perform functions in trans , and propose an experimental approach to dissect lncRNA activity based on these classifications. These strategies to further understand lncRNAs promise to reveal new and unanticipated biology, with great potential to advance our understanding of normal physiology and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression.

              Targeted gene regulation on a genome-wide scale is a powerful strategy for interrogating, perturbing, and engineering cellular systems. Here, we develop a method for controlling gene expression based on Cas9, an RNA-guided DNA endonuclease from a type II CRISPR system. We show that a catalytically dead Cas9 lacking endonuclease activity, when coexpressed with a guide RNA, generates a DNA recognition complex that can specifically interfere with transcriptional elongation, RNA polymerase binding, or transcription factor binding. This system, which we call CRISPR interference (CRISPRi), can efficiently repress expression of targeted genes in Escherichia coli, with no detectable off-target effects. CRISPRi can be used to repress multiple target genes simultaneously, and its effects are reversible. We also show evidence that the system can be adapted for gene repression in mammalian cells. This RNA-guided DNA recognition platform provides a simple approach for selectively perturbing gene expression on a genome-wide scale. Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                21 June 2021
                2021
                : 12
                : 665811
                Affiliations
                [1] Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope , Duarte, CA, United States
                Author notes

                Edited by: Sangeeta Dhawan, City of Hope National Medical Center, United States

                Reviewed by: Saumik Biswas, Western University, Canada; Satish K. Raut, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, India

                *Correspondence: Rama Natarajan, RNatarajan@ 123456coh.org

                This article was submitted to Diabetes: Molecular Mechanisms, a section of the journal Frontiers in Endocrinology

                †These authors have contributed equally to this work

                Article
                10.3389/fendo.2021.665811
                8255808
                34234740
                58ef1f9c-c450-4f2d-adbf-d6400ba8b745
                Copyright © 2021 Tanwar, Reddy and Natarajan

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 09 February 2021
                : 01 June 2021
                Page count
                Figures: 6, Tables: 1, Equations: 0, References: 138, Pages: 19, Words: 10296
                Funding
                Funded by: National Institute of Diabetes and Digestive and Kidney Diseases 10.13039/100000062
                Award ID: R01 DK065073, R01 DK081705, DP3 DK106917
                Funded by: National Heart, Lung, and Blood Institute 10.13039/100000050
                Award ID: R01 HL106089
                Categories
                Endocrinology
                Review

                Endocrinology & Diabetes
                diabetes,diabetes complications,long non-coding rnas,inflammation,fibrosis,epigenetics

                Comments

                Comment on this article