1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Event-related functional Magnetic Resonance Spectroscopy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Proton-Magnetic Resonance Spectroscopy (MRS) is a non-invasive brain imaging technique used to measure the concentration of different neurochemicals. “Single-voxel” MRS data is typically acquired across several minutes, before individual transients are averaged through time to give a measurement of neurochemical concentrations. However, this approach is not sensitive to more rapid temporal dynamics of neurochemicals, including those that reflect functional changes in neural computation relevant to perception, cognition, motor control and ultimately behaviour. In this review we discuss recent advances in functional MRS (fMRS) that now allow us to obtain event-related measures of neurochemicals. Event-related fMRS involves presenting different experimental conditions as a series of trials that are intermixed. Critically, this approach allows spectra to be acquired at a time resolution in the order of seconds. Here we provide a comprehensive user guide for event-related task designs, choice of MRS sequence, analysis pipelines, and appropriate interpretation of event-related fMRS data. We raise various technical considerations by examining protocols used to quantify dynamic changes in GABA, the primary inhibitory neurotransmitter in the brain. Overall, we propose that although more data is needed, event-related fMRS can be used to measure dynamic changes in neurochemicals at a temporal resolution relevant to computations that support human cognition and behaviour.

          Related collections

          Most cited references116

          • Record: found
          • Abstract: found
          • Article: not found

          The role of acetylcholine in learning and memory.

          Pharmacological data clearly indicate that both muscarinic and nicotinic acetylcholine receptors have a role in the encoding of new memories. Localized lesions and antagonist infusions demonstrate the anatomical locus of these cholinergic effects, and computational modeling links the function of cholinergic modulation to specific cellular effects within these regions. Acetylcholine has been shown to increase the strength of afferent input relative to feedback, to contribute to theta rhythm oscillations, activate intrinsic mechanisms for persistent spiking, and increase the modification of synapses. These effects might enhance different types of encoding in different cortical structures. In particular, the effects in entorhinal and perirhinal cortex and hippocampus might be important for encoding new episodic memories.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Estimation of metabolite concentrations from localized in vivo proton NMR spectra.

            The LCModel method analyzes an in vivo spectrum as a Linear Combination of Model spectra of metabolite solutions in vitro. By using complete model spectra, rather than just individual resonances, maximum information and uniqueness are incorporated into the analysis. A constrained regularization method accounts for differences in phase, baseline, and lineshapes between the in vitro and in vivo spectra, and estimates the metabolite concentrations and their uncertainties. LCModel is fully automatic in that the only input is the time-domain in vivo data. The lack of subjective interaction should help the exchange and comparison of results. More than 3000 human brain STEAM spectra from patients and healthy volunteers have been analyzed with LCModel. N-acetylaspartate, cholines, creatines, myo-inositol, and glutamate can be reliably determined, and abnormal levels of these or elevated levels of lactate, alanine, scyllo-inositol, glutamine, or glucose clearly indicate numerous pathologies. A computer program will be available.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Simultaneous in vivo spectral editing and water suppression.

              Water suppression is typically performed in vivo by exciting the longitudinal magnetization in combination with dephasing, or by using frequency-selective coherence generation. MEGA, a frequency-selective refocusing technique, can be placed into any pulse sequence element designed to generate a Hahn spin-echo or stimulated echo, to dephase transverse water coherences with minimal spectral distortions. Water suppression performance was verified in vivo using stimulated echo acquisition mode (STEAM) localization, which provided water suppression comparable with that achieved with four selective pulses in 3,1-DRYSTEAM. The advantage of the proposed method was exploited for editing J-coupled resonances. Using a double-banded pulse that selectively inverts a J-coupling partner and simultaneously suppresses water, efficient metabolite editing was achieved in the point resolved spectroscopy (PRESS) and STEAM sequences in which MEGA was incorporated. To illustrate the efficiency of the method, the detection of gamma-aminobutyric acid (GABA) was demonstrated, with minimal contributions from macromolecules and overlying singlet peaks at 4 T. The estimated occipital GABA concentration was consistent with previous reports, suggesting that editing for GABA is efficient when based on MEGA at high field strengths.
                Bookmark

                Author and article information

                Journal
                9215515
                Neuroimage
                Neuroimage
                NeuroImage
                1053-8119
                1095-9572
                26 May 2023
                26 May 2023
                13 June 2023
                21 June 2023
                : 276
                : 120194
                Affiliations
                [1 ]Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, United Kingdom
                [2 ]Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
                [3 ]Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
                [4 ]School of Health Sciences, Purdue University, West Lafayette, United States
                Author notes
                [* ]To whom correspondence should be addressed: renee.koolschijn@ 123456donders.ru.nl and helen.barron@ 123456merton.ox.ac.uk
                Article
                EMS177286
                10.1016/j.neuroimage.2023.120194
                7614684
                37244321
                58dc091c-8519-451f-8948-5677dea729f5

                This work is licensed under a CC BY 4.0 International license.

                History
                Categories
                Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article