149
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Insulin Resistance and the Polycystic Ovary Syndrome Revisited: An Update on Mechanisms and Implications

      1 , 2
      Endocrine Reviews
      The Endocrine Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Polycystic ovary syndrome (PCOS) is now recognized as an important metabolic as well as reproductive disorder conferring substantially increased risk for type 2 diabetes. Affected women have marked insulin resistance, independent of obesity. This article summarizes the state of the science since we last reviewed the field in the Endocrine Reviews in 1997. There is general agreement that obese women with PCOS are insulin resistant, but some groups of lean affected women may have normal insulin sensitivity. There is a post-binding defect in receptor signaling likely due to increased receptor and insulin receptor substrate-1 serine phosphorylation that selectively affects metabolic but not mitogenic pathways in classic insulin target tissues and in the ovary. Constitutive activation of serine kinases in the MAPK-ERK pathway may contribute to resistance to insulin's metabolic actions in skeletal muscle. Insulin functions as a co-gonadotropin through its cognate receptor to modulate ovarian steroidogenesis. Genetic disruption of insulin signaling in the brain has indicated that this pathway is important for ovulation and body weight regulation. These insights have been directly translated into a novel therapy for PCOS with insulin-sensitizing drugs. Furthermore, androgens contribute to insulin resistance in PCOS. PCOS may also have developmental origins due to androgen exposure at critical periods or to intrauterine growth restriction. PCOS is a complex genetic disease, and first-degree relatives have reproductive and metabolic phenotypes. Several PCOS genetic susceptibility loci have been mapped and replicated. Some of the same susceptibility genes contribute to disease risk in Chinese and European PCOS populations, suggesting that PCOS is an ancient trait.

          Related collections

          Most cited references437

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide association studies for complex traits: consensus, uncertainty and challenges.

          The past year has witnessed substantial advances in understanding the genetic basis of many common phenotypes of biomedical importance. These advances have been the result of systematic, well-powered, genome-wide surveys exploring the relationships between common sequence variation and disease predisposition. This approach has revealed over 50 disease-susceptibility loci and has provided insights into the allelic architecture of multifactorial traits. At the same time, much has been learned about the successful prosecution of association studies on such a scale. This Review highlights the knowledge gained, defines areas of emerging consensus, and describes the challenges that remain as researchers seek to obtain more complete descriptions of the susceptibility architecture of biomedical traits of interest and to translate the information gathered into improvements in clinical management.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Mechanisms of TGF-β Signaling from Cell Membrane to the Nucleus

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial.

              The worldwide increase in type 2 diabetes mellitus is becoming a major health concern. We aimed to assess the effect of acarbose in preventing or delaying conversion of impaired glucose tolerance to type 2 diabetes. In a multicentre, placebo-controlled randomised trial, we randomly allocated patients with impaired glucose tolerance to 100 mg acarbose or placebo three times daily. The primary endpoint was development of diabetes on the basis of a yearly oral glucose tolerance test (OGTT). Analyses were by intention to treat. We randomly allocated 714 patients with impaired glucose tolerance to acarbose and 715 to placebo. We excluded 61 (4%) patients because they did not have impaired glucose tolerance or had no postrandomisation data. 211 (31%) of 682 patients in the acarbose group and 130 (19%) of 686 on placebo discontinued treatment early. 221 (32%) patients randomised to acarbose and 285 (42%) randomised to placebo developed diabetes (relative hazard 0.75 [95% CI 0.63-0.90]; p=0.0015). Furthermore, acarbose significantly increased reversion of impaired glucose tolerance to normal glucose tolerance (p<0.0001). At the end of the study, treatment with placebo for 3 months was associated with an increase in conversion of impaired glucose tolerance to diabetes. The most frequent side-effects to acarbose treatment were flatulence and diarrhoea. Acarbose could be used, either as an alternative or in addition to changes in lifestyle, to delay development of type 2 diabetes in patients with impaired glucose tolerance.
                Bookmark

                Author and article information

                Journal
                Endocrine Reviews
                The Endocrine Society
                0163-769X
                1945-7189
                December 01 2012
                October 12 2012
                December 01 2012
                October 12 2012
                : 33
                : 6
                : 981-1030
                Affiliations
                [1 ]Medical School, University of Athens (E.D.-K.), Athens GR-14578, Greece
                [2 ]Northwestern University Feinberg School of Medicine (A.D.), Chicago, Illinois 60611-3008
                Article
                10.1210/er.2011-1034
                5393155
                23065822
                58a74730-7ea0-4d8b-a208-670dbbf642c0
                © 2012
                History

                Comments

                Comment on this article