0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhanced Anti-Skin-Aging Activity of Yeast Extract-Treated Resveratrol Rice DJ526

      , ,
      Molecules
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Resveratrol is a powerful antioxidant that defends against oxidative stress in cells but is not found in large quantities in plants. Resveratrol-enriched rice DJ526, which was developed as a functional crop, shows a diverse range of biological activities. Resveratrol production is measured as total resveratrol and its glycoside, piceid, which is mainly found in plant-derived resveratrol. In the present study, elicitation using yeast extract (YE), methyl jasmonate, and jasmonic acid increased resveratrol production in DJ526 rice seeds. DJ526 seeds elicited using 1 g/L (YE1) and 5 g/L yeast extract (YE5) showed enhanced resveratrol production and antioxidant activity. YE5-treated DJ526 seeds showed decreased melanin content by 46.1% and 37.0% compared with the negative control and DJ526 (non-elicitation), respectively. Both YE1 and YE5 efficiently improved the wound-healing activity by reducing the wound gap faster than in untreated cells, with a maximum rate of 60.2% at 24 h and complete closure at 48 h. YE1 and YE5 significantly decreased the levels of proinflammatory cytokine, TNF-α, and enhanced collagen synthesis in inflammatory cells. These findings indicate that YE-treated resveratrol rice DJ526 may improve resveratrol production and could be an active antiaging ingredient for cosmetic and skin therapy applications.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Properties of Resveratrol: In Vitro and In Vivo Studies about Metabolism, Bioavailability, and Biological Effects in Animal Models and Humans

          Plants containing resveratrol have been used effectively in traditional medicine for over 2000 years. It can be found in some plants, fruits, and derivatives, such as red wine. Therefore, it can be administered by either consuming these natural products or intaking nutraceutical pills. Resveratrol exhibits a wide range of beneficial properties, and this may be due to its molecular structure, which endow resveratrol with the ability to bind to many biomolecules. Among these properties its activity as an anticancer agent, a platelet antiaggregation agent, and an antioxidant, as well as its antiaging, antifrailty, anti-inflammatory, antiallergenic, and so forth activities, is worth highlighting. These beneficial biological properties have been extensively studied in humans and animal models, both in vitro and in vivo. The issue of bioavailability of resveratrol is of paramount importance and is determined by its rapid elimination and the fact that its absorption is highly effective, but the first hepatic step leaves little free resveratrol. Clarifying aspects like stability and pharmacokinetics of resveratrol metabolites would be fundamental to understand and apply the therapeutic properties of resveratrol.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Resveratrol: a review of plant sources, synthesis, stability, modification and food application.

            Resveratrol, a stilbene molecule belonging to the polyphenol family, is usually extracted from a great many natural plants. The technologies of preparation and extraction methods are developing rapidly. As resveratrol has many beneficial properties, it has been widely utilized in food and medicine industry. In terms of its structure, it is susceptible to degradation and can undergo chemical changes during food processing. Different studies have therefore given more attention to various aspects of resveratrol, including anti-aging, anti-oxidant, and anti-cancer activity. This review classifies the study of resveratrol, considers plant sources, synthesis, stability, common reactions, and food applications, and provides references to boost its food and medical utilization. © 2019 Society of Chemical Industry.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Elicitation: A Tool for Enriching the Bioactive Composition of Foods

              Elicitation is a good strategy to induce physiological changes and stimulate defense or stress-induced responses in plants. The elicitor treatments trigger the synthesis of phytochemical compounds in fruits, vegetables and herbs. These metabolites have been widely investigated as bioactive compounds responsible of plant cell adaptation to the environment, specific organoleptic properties of foods, and protective effects in human cells against oxidative processes in the development of neurodegenerative and cardiovascular diseases and certain types of cancer. Biotic (biological origin), abiotic (chemical or physical origin) elicitors and phytohormones have been applied alone or in combinations, in hydroponic solutions or sprays, and in different selected time points of the plant growth or during post-harvest. Understanding how plant tissues and their specific secondary metabolic pathways respond to specific treatments with elicitors would be the basis for designing protocols to enhance the production of secondary metabolites, in order to produce quality and healthy fresh foods.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                MOLEFW
                Molecules
                Molecules
                MDPI AG
                1420-3049
                March 2022
                March 17 2022
                : 27
                : 6
                : 1951
                Article
                10.3390/molecules27061951
                5863096a-a7f5-40cd-9c73-46904bd9b79f
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article