1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Recombinant Human Adenovirus Type 5 (H101) Combined With Chemotherapy for Advanced Gastric Carcinoma: A Retrospective Cohort Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          This retrospective cohort study aimed to evaluate the clinical outcomes of H101 combined with chemotherapy for advanced gastric carcinoma (GC) patients.

          Methods

          The advanced GC patients, who were treated with H101 and/or chemotherapy, were enrolled and divided into three groups according to treatment method. The clinical characteristics of patients, clinical short-term and long-term outcomes, followed up, and complication were analyzed.

          Results

          A total of 95 patients (30 patients in group A were treated with H101, 33 in group B patients were treated with chemotherapy, 32 patients in group C were treated with H101 combined with chemotherapy) were retrospectively reviewed. The disease control rate (DCR) and overall response rate (ORR) were significantly greater in group C (81.3% and 50.0%) than in groups A (63.3% and 30.0%) and B (66.7% and 33.3%, all p < 0.05). The 1- and 2-year survival rates and progression-free survival were significantly greater in group C than in groups A and B (all p < 0.05). There was no significant difference in complication among the three groups. At dose levels of 0.5 × 10 12 vp/day, 1.0 × 10 12 vp/day, and 1.5 × 10 12 vp/day, complications were not increased as increased of dose.

          Conclusions

          H101 combined with chemotherapy may be a potential therapeutic option for patients with advanced GC, and prospective studies with proper assessment of toxicity will be needed in the future.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1).

          Assessment of the change in tumour burden is an important feature of the clinical evaluation of cancer therapeutics: both tumour shrinkage (objective response) and disease progression are useful endpoints in clinical trials. Since RECIST was published in 2000, many investigators, cooperative groups, industry and government authorities have adopted these criteria in the assessment of treatment outcomes. However, a number of questions and issues have arisen which have led to the development of a revised RECIST guideline (version 1.1). Evidence for changes, summarised in separate papers in this special issue, has come from assessment of a large data warehouse (>6500 patients), simulation studies and literature reviews. HIGHLIGHTS OF REVISED RECIST 1.1: Major changes include: Number of lesions to be assessed: based on evidence from numerous trial databases merged into a data warehouse for analysis purposes, the number of lesions required to assess tumour burden for response determination has been reduced from a maximum of 10 to a maximum of five total (and from five to two per organ, maximum). Assessment of pathological lymph nodes is now incorporated: nodes with a short axis of 15 mm are considered measurable and assessable as target lesions. The short axis measurement should be included in the sum of lesions in calculation of tumour response. Nodes that shrink to <10mm short axis are considered normal. Confirmation of response is required for trials with response primary endpoint but is no longer required in randomised studies since the control arm serves as appropriate means of interpretation of data. Disease progression is clarified in several aspects: in addition to the previous definition of progression in target disease of 20% increase in sum, a 5mm absolute increase is now required as well to guard against over calling PD when the total sum is very small. Furthermore, there is guidance offered on what constitutes 'unequivocal progression' of non-measurable/non-target disease, a source of confusion in the original RECIST guideline. Finally, a section on detection of new lesions, including the interpretation of FDG-PET scan assessment is included. Imaging guidance: the revised RECIST includes a new imaging appendix with updated recommendations on the optimal anatomical assessment of lesions. A key question considered by the RECIST Working Group in developing RECIST 1.1 was whether it was appropriate to move from anatomic unidimensional assessment of tumour burden to either volumetric anatomical assessment or to functional assessment with PET or MRI. It was concluded that, at present, there is not sufficient standardisation or evidence to abandon anatomical assessment of tumour burden. The only exception to this is in the use of FDG-PET imaging as an adjunct to determination of progression. As is detailed in the final paper in this special issue, the use of these promising newer approaches requires appropriate clinical validation studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer statistics in China, 2015.

            With increasing incidence and mortality, cancer is the leading cause of death in China and is a major public health problem. Because of China's massive population (1.37 billion), previous national incidence and mortality estimates have been limited to small samples of the population using data from the 1990s or based on a specific year. With high-quality data from an additional number of population-based registries now available through the National Central Cancer Registry of China, the authors analyzed data from 72 local, population-based cancer registries (2009-2011), representing 6.5% of the population, to estimate the number of new cases and cancer deaths for 2015. Data from 22 registries were used for trend analyses (2000-2011). The results indicated that an estimated 4292,000 new cancer cases and 2814,000 cancer deaths would occur in China in 2015, with lung cancer being the most common incident cancer and the leading cause of cancer death. Stomach, esophageal, and liver cancers were also commonly diagnosed and were identified as leading causes of cancer death. Residents of rural areas had significantly higher age-standardized (Segi population) incidence and mortality rates for all cancers combined than urban residents (213.6 per 100,000 vs 191.5 per 100,000 for incidence; 149.0 per 100,000 vs 109.5 per 100,000 for mortality, respectively). For all cancers combined, the incidence rates were stable during 2000 through 2011 for males (+0.2% per year; P = .1), whereas they increased significantly (+2.2% per year; P < .05) among females. In contrast, the mortality rates since 2006 have decreased significantly for both males (-1.4% per year; P < .05) and females (-1.1% per year; P < .05). Many of the estimated cancer cases and deaths can be prevented through reducing the prevalence of risk factors, while increasing the effectiveness of clinical care delivery, particularly for those living in rural areas and in disadvantaged populations.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Cancer statistics for the year 2020: An overview

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                09 December 2021
                2021
                : 11
                : 752504
                Affiliations
                [1] Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University , Qingdao, China
                Author notes

                Edited by: Pankaj Kumar Garg, Shri Guru Ram Rai Institute of Medical and Health Sciences, India

                Reviewed by: Deepa Joseph, All India Institute of Medical Sciences, Rishikesh, India; Jyoti Sharma, All India Institute of Medical Sciences, India; Amit Sehrawat, All India Institute of Medical Sciences, Rishikesh, India

                *Correspondence: Xiangjun Jiang, drjxj@ 123456163.com

                This article was submitted to Gastrointestinal Cancers: Gastric & Esophageal Cancers, a section of the journal Frontiers in Oncology

                Article
                10.3389/fonc.2021.752504
                8695551
                34956877
                585f702a-9a67-4f77-bc7d-ec40cf75278f
                Copyright © 2021 Zhang, Cui, Guan and Jiang

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 August 2021
                : 16 November 2021
                Page count
                Figures: 5, Tables: 5, Equations: 0, References: 35, Pages: 9, Words: 5186
                Categories
                Oncology
                Original Research

                Oncology & Radiotherapy
                h101,chemotherapy,advanced gastric carcinoma,survival,response rate
                Oncology & Radiotherapy
                h101, chemotherapy, advanced gastric carcinoma, survival, response rate

                Comments

                Comment on this article