4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhanced flame-retardant and mechanical properties of epoxy resin by combination with layered double hydroxide, Mg2B2O5 whisker, and dodecyl dihydrogen phosphate

      , , , ,
      Materials & Design
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: not found
          • Article: not found

          A liquid phosphorus-containing imidazole derivative as flame-retardant curing agent for epoxy resin with enhanced thermal latency, mechanical, and flame-retardant performances

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Functionalized graphene with Co-ZIF adsorbed borate ions as an effective flame retardant and smoke suppression agent for epoxy resin

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              One-Pot Synthesis of Water-Swellable Mg–Al Layered Double Hydroxides and Graphene Oxide Nanocomposites for Efficient Removal of As(V) from Aqueous Solutions

              In this Article, we report a remarkably simple and efficient method for the preparation of layered double hydroxides and graphene oxide (LDHs/GO) nanocomposites with varying GO amounts via a hydrothermal process. The graphene nature in the resulting LDHs/GO nanocomposites was confirmed by X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), N2 adsorption-desorption, and X-ray photoelectron spectroscopy (XPS). The LDHs/GO nanocomposites exhibited swelling behavior in water and forming a gel. The adsorption performance of the LDHs/GO nanocomposites was evaluated for the removal of arsenate (As(V)) from aqueous solutions, and the results showed that the ratio of GO to LDHs in the nanocomposites significantly affected the adsorption capacity. Higher and lower amounts of GO in LDHs/GO nanocomposites showed lower adsorption capacity of As(V). A maximum adsorption capacity of 183.11 mg/g (2.44 mmol/g) was achieved on the LDHs/GO containing 6.0% GO due to the higher Brunauer-Emmett-Teller (BET) surface area than other samples. Owing to their high uptake capability of As(V), water-swellable LDHs/GO nanocomposites are expected to have potential applications as adsorbents for As(V) polluted water cleanup.
                Bookmark

                Author and article information

                Journal
                Materials & Design
                Materials & Design
                Elsevier BV
                02641275
                May 2022
                May 2022
                : 217
                : 110608
                Article
                10.1016/j.matdes.2022.110608
                5854807d-2489-4280-be54-22a2425983e4
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article