5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fouling Issues in Membrane Bioreactors (MBRs) for Wastewater Treatment: Major Mechanisms, Prevention and Control Strategies

      , , , ,
      Processes
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references307

          • Record: found
          • Abstract: found
          • Article: not found

          Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter.

          Excitation-emission matrix (EEM) fluorescence spectroscopy has been widely used to characterize dissolved organic matter (DOM) in water and soil. However, interpreting the > 10,000 wavelength-dependent fluorescence intensity data points represented in EEMs has posed a significant challenge. Fluorescence regional integration, a quantitative technique that integrates the volume beneath an EEM, was developed to analyze EEMs. EEMs were delineated into five excitation-emission regions based on fluorescence of model compounds, DOM fractions, and marine waters or freshwaters. Volumetric integration under the EEM within each region, normalized to the projected excitation-emission area within that region and dissolved organic carbon concentration, resulted in a normalized region-specific EEM volume (phi(i,n)). Solid-state carbon nuclear magnetic resonance (13C NMR), Fourier transform infrared (FTIR) analysis, ultraviolet-visible absorption spectra, and EEMs were obtained for standard Suwannee River fulvic acid and 15 hydrophobic or hydrophilic acid, neutral, and base DOM fractions plus nonfractionated DOM from wastewater effluents and rivers in the southwestern United States. DOM fractions fluoresced in one or more EEM regions. The highest cumulative EEM volume (phi(T,n) = sigma phi(i,n)) was observed for hydrophobic neutral DOM fractions, followed by lower phi(T,n) values for hydrophobic acid, base, and hydrophilic acid DOM fractions, respectively. An extracted wastewater biomass DOM sample contained aromatic protein- and humic-like material and was characteristic of bacterial-soluble microbial products. Aromatic carbon and the presence of specific aromatic compounds (as indicated by solid-state 13C NMR and FTIR data) resulted in EEMs that aided in differentiating wastewater effluent DOM from drinking water DOM.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review.

            A review concerning the definition, extraction, characterization, production and functions of extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment reactors is given in this paper. EPS are a complex high-molecular-weight mixture of polymers excreted by microorganisms, produced from cell lysis and adsorbed organic matter from wastewater. They are a major component in microbial aggregates for keeping them together in a three-dimensional matrix. Their characteristics (e.g., adsorption abilities, biodegradability and hydrophilicity/hydrophobicity) and the contents of the main components (e.g., carbohydrates, proteins, humic substances and nucleic acids) in EPS are found to crucially affect the properties of microbial aggregates, such as mass transfer, surface characteristics, adsorption ability, stability, the formation of microbial aggregates etc. However, as EPS are very complex, the knowledge regarding EPS is far from complete and much work is still required to fully understand their precise roles in the biological treatment process. Copyright © 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Surface modifications for antifouling membranes.

                Bookmark

                Author and article information

                Journal
                PROCCO
                Processes
                Processes
                MDPI AG
                2227-9717
                December 2014
                October 20 2014
                : 2
                : 4
                : 795-866
                Article
                10.3390/pr2040795
                583afdf2-d51f-45ee-a9fc-f90103d7ca4c
                © 2014

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article