47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular phylogeny, divergence time estimates and historical biogeography within one of the world's largest monocot genera

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Allium subgenus Anguinum is composed of two sister groups. In the eastern Asian geographical group, incongruence between gene trees and morphology-based taxonomies was recovered as was incongruence between data from plastid and nuclear sequences. This incongruence is likely due to the combined effects of a recent radiation, incomplete lineage sorting, and hybridization/introgression. The crown group of Anguinum originated during the late Miocene, and eastern Asia was the ancestral area for Anguinum. It is inferred that in the late Pliocene/Early Pleistocene, with cooling climates and the uplift of the Himalayas and Hengduan Mountains, the ancestor of the eastern Asian alliance clade underwent a very recent radiation.

          Abstract

          A primary aim of historical biogeography is to identify the causal factors or processes that have shaped the composition and distribution of biotas over time. Another is to infer the evolution of geographic ranges of species and clades in a phylogenetic context. To this end, historical biogeography addresses important questions such as: Where were ancestors distributed? Where did lineages originate? Which processes cause geographic ranges to evolve through time? Allium subgenus Anguinum comprises approximately twelve taxa with a disjunct distribution in the high mountains from south-western Europe to eastern Asia and in northeastern North America. Although both the systematic position and the geographical limits of Anguinum have been identified, to date no molecular systematic study has been performed utilizing a comprehensive sampling of these species. With an emphasis on the Anguinum eastern Asian geographical group, the goals of the present study were: (i) to infer species-level phylogenetic relationships within Anguinum, (ii) to assess molecular divergence and estimated the times of the major splits in Anguinum and (iii) to trace the biogeographic history of the subgenus. Four DNA sequences (ITS, matK, trnH-psbA, rps16) were used to reconstruct the phylogeny of Allium subgen. Anguinum. RbcL sequences were used to estimate divergences time for Allium, and sequences of ITS were used to estimate the divergence times for Anguinum and its main lineages and to provide implications for the evolutionary history of the subgenus. Phylogenetic analyses for all Allium corroborate that Anguinum is monophyletic and indicate that Anguinum is composed of two sister groups: one with a Eurasian–American distribution, and the other restricted to eastern Asia. In the eastern Asian geographical group, incongruence between gene trees and morphology-based taxonomies was recovered as was incongruence between data from plastid and nuclear sequences. This incongruence is likely due to the combined effects of a recent radiation, incomplete lineage sorting, and hybridization/introgression. Divergence time estimates suggest that the crown group of Anguinum originated during the late Miocene (ca. 7.16 Mya) and then diverged and dispersed. Biogeographic analyses using statistical dispersal–vicariance analysis (S-DIVA) and a likelihood method support an eastern Asia origin of Anguinum. It is inferred that in the late Pliocene/Early Pleistocene, with cooling climates and the uplift of the Himalayas and Hengduan Mountains, the ancestor of the eastern Asian alliance clade underwent a very recent radiation.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Trends, rhythms, and aberrations in global climate 65 Ma to present.

          Since 65 million years ago (Ma), Earth's climate has undergone a significant and complex evolution, the finer details of which are now coming to light through investigations of deep-sea sediment cores. This evolution includes gradual trends of warming and cooling driven by tectonic processes on time scales of 10(5) to 10(7) years, rhythmic or periodic cycles driven by orbital processes with 10(4)- to 10(6)-year cyclicity, and rare rapid aberrant shifts and extreme climate transients with durations of 10(3) to 10(5) years. Here, recent progress in defining the evolution of global climate over the Cenozoic Era is reviewed. We focus primarily on the periodic and anomalous components of variability over the early portion of this era, as constrained by the latest generation of deep-sea isotope records. We also consider how this improved perspective has led to the recognition of previously unforeseen mechanisms for altering climate.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography.

            We announce the release of Reconstruct Ancestral State in Phylogenies (RASP), a user-friendly software package for inferring historical biogeography through reconstructing ancestral geographic distributions on phylogenetic trees. RASP utilizes the widely used Statistical-Dispersal Vicariance Analysis (S-DIVA), the Dispersal-Extinction-Cladogenesis (DEC) model (Lagrange), a Statistical DEC model (S-DEC) and BayArea. It provides a graphical user interface (GUI) to specify a phylogenetic tree or set of trees and geographic distribution constraints, draws pie charts on the nodes of a phylogenetic tree to indicate levels of uncertainty, and generates high-quality exportable graphical results. RASP can run on both Windows and Mac OS X platforms. All documentation and source code for RASP is freely available at http://mnh.scu.edu.cn/soft/blog/RASP.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world's most diverse temperate flora.

              The Sino-Japanese Floristic Region (SJFR) of East Asia harbors the most diverse of the world's temperate flora, and was the most important glacial refuge for its Tertiary representatives ('relics') throughout Quaternary ice-age cycles. A steadily increasing number of phylogeographic studies in the SJFR of mainland China and adjacent areas, including the Qinghai-Tibetan-Plateau (QTP) and Sino-Himalayan region, have documented the population histories of temperate plant species in these regions. Here we review this current literature that challenges the oft-stated view of the SJFR as a glacial sanctuary for temperate plants, instead revealing profound effects of Quaternary changes in climate, topography, and/or sea level on the current genetic structure of such organisms. There are three recurrent phylogeographic scenarios identified by different case studies that broadly agree with longstanding biogeographic or palaeo-ecological hypotheses: (i) postglacial re-colonization of the QTP from (south-)eastern glacial refugia; (ii) population isolation and endemic species formation in Southwest China due to tectonic shifts and river course dynamics; and (iii) long-term isolation and species survival in multiple localized refugia of (warm-)temperate deciduous forest habitats in subtropical (Central/East/South) China. However, in four additional instances, phylogeographic findings seem to conflict with a priori predictions raised by palaeo-data, suggesting instead: (iv) glacial in situ survival of some hardy alpine herbs and forest trees on the QTP platform itself; (v) long-term refugial isolation of (warm-)temperate evergreen taxa in subtropical China; (vi) 'cryptic' glacial survival of (cool-)temperate deciduous forest trees in North China; and (vii) unexpectedly deep (Late Tertiary/early-to-mid Pleistocene) allopatric-vicariant differentiation of disjunct lineages in the East China-Japan-Korea region due to past sea transgressions. We discuss these and other consequences of the main phylogeographic findings in light of palaeo-environmental evidence, emphasize notable gaps in our knowledge, and outline future research prospects for disentangling the evolution and biogeographic history of the region's extremely diverse temperate flora. Copyright © 2011 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                AoB Plants
                AoB Plants
                aobpla
                aobpla
                AoB Plants
                Oxford University Press
                2041-2851
                2016
                08 August 2016
                : 8
                : plw041
                Affiliations
                [1 ]Key Laboratory of Bio-Resources and Eco-Environment, MOE, College of Life Sciences, Sichuan University, Chengdu 610064, China Sichuan
                [2 ]College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China Inner Mongolia
                Author notes

                Associate Editor: Chelsea D. Specht

                Citation: Li Q-Q, Zhou S-D , Huang D-Q, He X-J, Wei X-Q. 2016. Molecular phylogeny, divergence time estimates and historical biogeography within one of the world's largest monocot genera. AoB PLANTS 8: plw041; doi:10.1093/aobpla/plw041

                [* ]Corresponding author’s e-mail address: xjhe@ 123456scu.edu.cn
                Article
                plw041
                10.1093/aobpla/plw041
                4976397
                27339054
                581f9a6d-b095-4fd7-82cd-900981d9f396
                Published by Oxford University Press on behalf of the Annals of Botany Company.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 January 2016
                : 11 May 2016
                Page count
                Pages: 17
                Categories
                Research Article

                Plant science & Botany
                allium,anguinum,divergence time,historical biogeography,hybridization/introgression,incomplete lineage sorting,phylogeny,radiation

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content36

                Cited by12

                Most referenced authors826