3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Serosurvey for Middle East respiratory syndrome coronavirus antibody in dromedary camels and human patients at a secondary care hospital, Illela, Northwest Nigeria

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Middle East respiratory syndrome (MERS) is a serious emerging zoonosis. It is characterized by severe infection of the respiratory tract in humans. Dromedary camels are considered to be the most probable origin of the pathogenic Middle East respiratory syndrome coronavirus (MERS-CoV). This cross-sectional survey was carried out to ascertain the seroprevalence of MERS-CoV in dromedary camels at Illela border and human patients in a secondary care hospital in Illela, Sokoto State, Nigeria from November 2016 to January 2017. Serum samples from 74 camels and 39 human patients were collected while a data form was administered to the camel handlers (40) and human patients to obtain information on zoographic characteristics of dromedary camels, demographic characteristics of camel handlers and human patients and some practices of both groups which are likely to predispose to MERS-CoV infection. The serum samples were analyzed for antibodies against MERS-CoV using the indirect Enzyme-Linked Immuno-Sorbent Assay (ELISA). All the camels sampled were seropositive against MERS-CoV and 74% of the human patients had antibodies against MERS. All handlers treated their camels without consulting veterinarians and there was little or no biosecurity measures undertaken. Age, sex, and occupation were not significant determinants for the presence of MERS-CoV antibody in human patients sampled. This study serves as a baseline for similar researches and due to the high seroprevalence obtained in this study for both camels and humans, there is need for trained personnel, surveillance and diagnostic tools at our border posts and animal markets.

          Supplementary information

          The online version contains supplementary material available at 10.1007/s00580-022-03351-3.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: found

          Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study

          Summary Background Middle East respiratory syndrome (MERS) is a new human disease caused by a novel coronavirus (CoV). Clinical data on MERS-CoV infections are scarce. We report epidemiological, demographic, clinical, and laboratory characteristics of 47 cases of MERS-CoV infections, identify knowledge gaps, and define research priorities. Methods We abstracted and analysed epidemiological, demographic, clinical, and laboratory data from confirmed cases of sporadic, household, community, and health-care-associated MERS-CoV infections reported from Saudi Arabia between Sept 1, 2012, and June 15, 2013. Cases were confirmed as having MERS-CoV by real-time RT-PCR. Findings 47 individuals (46 adults, one child) with laboratory-confirmed MERS-CoV disease were identified; 36 (77%) were male (male:female ratio 3·3:1). 28 patients died, a 60% case-fatality rate. The case-fatality rate rose with increasing age. Only two of the 47 cases were previously healthy; most patients (45 [96%]) had underlying comorbid medical disorders, including diabetes (32 [68%]), hypertension (16 [34%]), chronic cardiac disease (13 [28%]), and chronic renal disease (23 [49%]). Common symptoms at presentation were fever (46 [98%]), fever with chills or rigors (41 [87%]), cough (39 [83%]), shortness of breath (34 [72%]), and myalgia (15 [32%]). Gastrointestinal symptoms were also frequent, including diarrhoea (12 [26%]), vomiting (ten [21%]), and abdominal pain (eight [17%]). All patients had abnormal findings on chest radiography, ranging from subtle to extensive unilateral and bilateral abnormalities. Laboratory analyses showed raised concentrations of lactate dehydrogenase (23 [49%]) and aspartate aminotransferase (seven [15%]) and thrombocytopenia (17 [36%]) and lymphopenia (16 [34%]). Interpretation Disease caused by MERS-CoV presents with a wide range of clinical manifestations and is associated with substantial mortality in admitted patients who have medical comorbidities. Major gaps in our knowledge of the epidemiology, community prevalence, and clinical spectrum of infection and disease need urgent definition. Funding None.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Middle East respiratory syndrome

            Summary Middle East respiratory syndrome (MERS) is a highly lethal respiratory disease caused by a novel single-stranded, positive-sense RNA betacoronavirus (MERS-CoV). Dromedary camels, hosts for MERS-CoV, are implicated in direct or indirect transmission to human beings, although the exact mode of transmission is unknown. The virus was first isolated from a patient who died from a severe respiratory illness in June, 2012, in Jeddah, Saudi Arabia. As of May 31, 2015, 1180 laboratory-confirmed cases (483 deaths; 40% mortality) have been reported to WHO. Both community-acquired and hospital-acquired cases have been reported with little human-to-human transmission reported in the community. Although most cases of MERS have occurred in Saudi Arabia and the United Arab Emirates, cases have been reported in Europe, the USA, and Asia in people who travelled from the Middle East or their contacts. Clinical features of MERS range from asymptomatic or mild disease to acute respiratory distress syndrome and multiorgan failure resulting in death, especially in individuals with underlying comorbidities. No specific drug treatment exists for MERS and infection prevention and control measures are crucial to prevent spread in health-care facilities. MERS-CoV continues to be an endemic, low-level public health threat. However, the virus could mutate to have increased interhuman transmissibility, increasing its pandemic potential.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clinical features and viral diagnosis of two cases of infection with Middle East Respiratory Syndrome coronavirus: a report of nosocomial transmission

              Summary Background Human infection with a novel coronavirus named Middle East Respiratory Syndrome coronavirus (MERS-CoV) was first identified in Saudi Arabia and the Middle East in September, 2012, with 44 laboratory-confirmed cases as of May 23, 2013. We report detailed clinical and virological data for two related cases of MERS-CoV disease, after nosocomial transmission of the virus from one patient to another in a French hospital. Methods Patient 1 visited Dubai in April, 2013; patient 2 lives in France and did not travel abroad. Both patients had underlying immunosuppressive disorders. We tested specimens from the upper (nasopharyngeal swabs) or the lower (bronchoalveolar lavage, sputum) respiratory tract and whole blood, plasma, and serum specimens for MERS-CoV by real-time RT-PCR targeting the upE and Orf1A genes of MERS-CoV. Findings Initial clinical presentation included fever, chills, and myalgia in both patients, and for patient 1, diarrhoea. Respiratory symptoms rapidly became predominant with acute respiratory failure leading to mechanical ventilation and extracorporeal membrane oxygenation (ECMO). Both patients developed acute renal failure. MERS-CoV was detected in lower respiratory tract specimens with high viral load (eg, cycle threshold [Ct] values of 22·9 for upE and 24 for Orf1a for a bronchoalveolar lavage sample from patient 1; Ct values of 22·5 for upE and 23·9 for Orf1a for an induced sputum sample from patient 2), whereas nasopharyngeal specimens were weakly positive or inconclusive. The two patients shared the same room for 3 days. The incubation period was estimated at 9–12 days for the second case. No secondary transmission was documented in hospital staff despite the absence of specific protective measures before the diagnosis of MERS-CoV was suspected. Patient 1 died on May 28, due to refractory multiple organ failure. Interpretation Patients with respiratory symptoms returning from the Middle East or exposed to a confirmed case should be isolated and investigated for MERS-CoV with lower respiratory tract sample analysis and an assumed incubation period of 12 days. Immunosuppression should also be taken into account as a risk factor. Funding French Institute for Public Health Surveillance, ANR grant Labex Integrative Biology of Emerging Infectious Diseases, and the European Community's Seventh Framework Programme projects EMPERIE and PREDEMICS.
                Bookmark

                Author and article information

                Contributors
                iniobongugochukwu@gmail.com
                Journal
                Comp Clin Path
                Comp Clin Path
                Comparative Clinical Pathology
                Springer London (London )
                1618-5641
                1618-565X
                28 April 2022
                : 1-10
                Affiliations
                [1 ]Ministry of Animal Health Husbandry and Fisheries, Kebbi State, Nigeria
                [2 ]GRID grid.411225.1, ISNI 0000 0004 1937 1493, Department of Veterinary Public Health and Preventive Medicine, , Ahmadu Bello University Zaria, ; Kaduna State, Nigeria
                [3 ]GRID grid.412771.6, ISNI 0000 0001 2150 5428, Department of Veterinary Public Health and Preventive Medicine, , Usmanu Danfodiyo University Sokoto, ; Sokoto State, Nigeria
                [4 ]GRID grid.10757.34, ISNI 0000 0001 2108 8257, Department of Veterinary Pathology and Microbiology, , University of Nigeria, ; Nsukka, Nigeria
                Author information
                http://orcid.org/0000-0001-7410-8311
                Article
                3351
                10.1007/s00580-022-03351-3
                9050177
                35506144
                58106c87-d504-4d22-a289-55b481290002
                © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 25 January 2022
                : 19 April 2022
                Categories
                Original Article

                Pathology
                mers-cov,seroprevalence,dromedary camels,humans,secondary care hospital
                Pathology
                mers-cov, seroprevalence, dromedary camels, humans, secondary care hospital

                Comments

                Comment on this article