32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Chfr and RNF8 synergistically regulate ATM activation

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Protein ubiquitination is a critical component of the DNA damage response. To study the mechanism of the DNA damage-induced ubiquitination pathway, we analyzed the impact of the loss of two E3 ubiquitin ligases, RNF8 and Chfr. Interestingly, DNA damage-induced ATM activation is suppressed in RNF8 and Chfr double-deficient (DKO) cells, and DKO mice develop thymic lymphomas that are nearly diploid but harbor clonal chromosome translocations. Moreover, DKO mice and cells are hypersensitive to ionizing radiation. We show evidence that RNF8 and Chfr synergistically regulate histone ubiquitination to control histone H4K16 acetylation through MRG15-dependent acetyltransferase complexes. Through these complexes, RNF8 and CHFR affect chromatin relaxation and modulate ATM activation and DNA damage response pathways. Collectively, our findings demonstrate that two chromatin remodeling factors, RNF8 and Chfr, function together to activate ATM and maintain genomic stability in vivo.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          The DNA damage response: ten years after.

          The DNA damage response (DDR), through the action of sensors, transducers, and effectors, orchestrates the appropriate repair of DNA damage and resolution of DNA replication problems, coordinating these processes with ongoing cellular physiology. In the past decade, we have witnessed an explosion in understanding of DNA damage sensing, signaling, and the complex interplay between protein phosphorylation and the ubiquitin pathway employed by the DDR network to execute the response to DNA damage. These findings have important implications for aging and cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Histone H4-K16 acetylation controls chromatin structure and protein interactions.

            Acetylation of histone H4 on lysine 16 (H4-K16Ac) is a prevalent and reversible posttranslational chromatin modification in eukaryotes. To characterize the structural and functional role of this mark, we used a native chemical ligation strategy to generate histone H4 that was homogeneously acetylated at K16. The incorporation of this modified histone into nucleosomal arrays inhibits the formation of compact 30-nanometer-like fibers and impedes the ability of chromatin to form cross-fiber interactions. H4-K16Ac also inhibits the ability of the adenosine triphosphate-utilizing chromatin assembly and remodeling enzyme ACF to mobilize a mononucleosome, indicating that this single histone modification modulates both higher order chromatin structure and functional interactions between a nonhistone protein and the chromatin fiber.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer.

              CpG island hypermethylation and global genomic hypomethylation are common epigenetic features of cancer cells. Less attention has been focused on histone modifications in cancer cells. We characterized post-translational modifications to histone H4 in a comprehensive panel of normal tissues, cancer cell lines and primary tumors. Using immunodetection, high-performance capillary electrophoresis and mass spectrometry, we found that cancer cells had a loss of monoacetylated and trimethylated forms of histone H4. These changes appeared early and accumulated during the tumorigenic process, as we showed in a mouse model of multistage skin carcinogenesis. The losses occurred predominantly at the acetylated Lys16 and trimethylated Lys20 residues of histone H4 and were associated with the hypomethylation of DNA repetitive sequences, a well-known characteristic of cancer cells. Our data suggest that the global loss of monoacetylation and trimethylation of histone H4 is a common hallmark of human tumor cells.
                Bookmark

                Author and article information

                Journal
                101186374
                31761
                Nat Struct Mol Biol
                Nature structural & molecular biology
                1545-9993
                1545-9985
                4 May 2011
                26 June 2011
                1 January 2012
                : 18
                : 7
                : 761-768
                Affiliations
                [1 ] Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
                [2 ] Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
                [3 ] Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
                Author notes
                Correspondence should be addressed to: X.Y. ( xiayu@ 123456umich.edu )
                Article
                nihpa290595
                10.1038/nsmb.2078
                3130800
                21706008
                580981c5-aef6-4b1a-952b-5da3978e5597

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: National Cancer Institute : NCI
                Award ID: R01 CA132755-04 || CA
                Funded by: National Cancer Institute : NCI
                Award ID: R01 CA130899-04 || CA
                Categories
                Article

                Molecular biology
                Molecular biology

                Comments

                Comment on this article