Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Ralstonia solanacearum effector RipN suppresses plant PAMP‐triggered immunity, localizes to the endoplasmic reticulum and nucleus, and alters the NADH/NAD + ratio in Arabidopsis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Ralstonia solanacearum, one of the most destructive plant bacterial pathogens, delivers an array of effector proteins via its type III secretion system for pathogenesis. However, the biochemical functions of most of these proteins remain unclear. RipN is a type III effector with unknown function(s) from the pathogen R. solanacearum. Here, we demonstrate that RipN is a conserved type III effector found within the R. solanacearum species complex that contains a putative Nudix hydrolase domain and has ADP‐ribose/NADH pyrophosphorylase activity in vitro. Further analysis shows that RipN localizes to the endoplasmic reticulum (ER) and nucleus in Nicotiana tabacum leaf cells and Arabidopsis protoplasts, and truncation of the C‐terminus of RipN results in a loss of nuclear and ER targeting. Furthermore, the expression of RipN in Arabidopsis suppresses callose deposition and the transcription of pathogen‐associated molecular pattern (PAMP)‐triggered immunity (PTI) marker genes under flg22 treatment, and promotes bacterial growth in planta. In addition, the expression of RipN in plant cells alters NADH/NAD +, but not GSH/GSSG, ratios, and its Nudix hydrolase activity is indispensable for such biochemical function. These results suggest that RipN acts as a Nudix hydrolase, alters the NADH/NAD + ratio of the plant and contributes to R. solanacearum virulence by suppression of PTI of the host.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response.

          Reactive oxygen intermediates (ROI) are strongly associated with plant defense responses. The origin of these ROI has been controversial. Arabidopsis respiratory burst oxidase homologues (rboh genes) have been proposed to play a role in ROI generation. We analyzed lines carrying dSpm insertions in the highly expressed AtrbohD and AtrbohF genes. Both are required for full ROI production observed during incompatible interactions with the bacterial pathogen Pseudomonas syringae pv. tomato DC3000(avrRpm1) and the oomycete parasite Peronospora parasitica. We also observed reduced cell death, visualized by trypan blue stain and reduced electrolyte leakage, in the Atrboh mutants after DC3000(avrRpm1) inoculation. However, enhanced cell death is observed after infection of mutant lines with P. parasitica. Paradoxically, although atrbohD mutation eliminated the majority of total ROI production, atrbohF mutation exhibited the strongest effect on cell death.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Nudix hydrolase superfamily.

            Nudix hydrolases are found in all classes of organism and hydrolyse a wide range of organic pyrophosphates, including nucleoside di- and triphosphates, dinucleoside and diphosphoinositol polyphosphates, nucleotide sugars and RNA caps, with varying degrees of substrate specificity. Some superfamily members, such as Escherichia coli MicrotT, have the ability to degrade potentially mutagenic, oxidised nucleotides while others control the levels of metabolic intermediates and signalling compounds. In prokaryotes and simple eukaryo tes, the number of Nudix genes varies from 0 to over 30, reflecting the metabolic complexity and adaptability of the organism. Mammals have around 24 Nudix genes, several of which encode more than one variant. This review integrates the sizeable recent literature on these proteins with information from global functional genomic studies to provide some insights into the possible roles of different superfamily members in cellular metabolism and homeostasis and to stimulate discussion and further research into this ubiquitous protein family.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Glutathione: Antioxidant Properties Dedicated to Nanotechnologies

              Which scientist has never heard of glutathione (GSH)? This well-known low-molecular-weight tripeptide is perhaps the most famous natural antioxidant. However, the interest in GSH should not be restricted to its redox properties. This multidisciplinary review aims to bring out some lesser-known aspects of GSH, for example, as an emerging tool in nanotechnologies to achieve targeted drug delivery. After recalling the biochemistry of GSH, including its metabolism pathways and redox properties, its involvement in cellular redox homeostasis and signaling is described. Analytical methods for the dosage and localization of GSH or glutathiolated proteins are also covered. Finally, the various therapeutic strategies to replenish GSH stocks are discussed, in parallel with its use as an addressing molecule in drug delivery.
                Bookmark

                Author and article information

                Contributors
                luyj@mail.sysu.edu.cn
                Journal
                Mol Plant Pathol
                Mol. Plant Pathol
                10.1111/(ISSN)1364-3703
                MPP
                Molecular Plant Pathology
                John Wiley and Sons Inc. (Hoboken )
                1464-6722
                1364-3703
                18 February 2019
                April 2019
                : 20
                : 4 ( doiID: 10.1111/mpp.2019.20.issue-4 )
                : 533-546
                Affiliations
                [ 1 ] School of Life Sciences Sun Yat‐sen University Guangzhou 510275 China
                [ 2 ] State Key Laboratory of Biocontrol Sun Yat‐sen University Guangzhou 510275 China
                Author notes
                [*] [* ] Correspondence: Email: luyj@ 123456mail.sysu.edu.cn

                Author information
                https://orcid.org/0000-0002-3030-5724
                Article
                MPP12773
                10.1111/mpp.12773
                6637912
                30499216
                57e8f626-e91c-4bca-8ba1-9effc2f79489
                © 2018 The Authors. Molecular Plant Pathology Published by BSPP and John Wiley & Sons Ltd

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 5, Tables: 0, Pages: 0, Words: 20189
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: J1310025
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                mpp12773
                April 2019
                Converter:WILEY_ML3GV2_TO_NLMPMC version:5.6.4 mode:remove_FC converted:10.06.2019

                Plant science & Botany
                effector protein,nudix hydrolase,plant immunity,ralstonia solanacearum,ripn,type iii secretion system

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content456

                Cited by23

                Most referenced authors700