6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Improving YOLOv5 with Attention Mechanism for Detecting Boulders from Planetary Images

      , , ,
      Remote Sensing
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is of great significance to apply the object detection methods to automatically detect boulders from planetary images and analyze their distribution. This contributes to the selection of candidate landing sites and the understanding of the geological processes. This paper improves the state-of-the-art object detection method of YOLOv5 with attention mechanism and designs a pyramid based approach to detect boulders from planetary images. A new feature fusion layer has been designed to capture more shallow features of the small boulders. The attention modules implemented by combining the convolutional block attention module (CBAM) and efficient channel attention network (ECA-Net) are also added into YOLOv5 to highlight the information that contribute to boulder detection. Based on the Pascal Visual Object Classes 2007 (VOC2007) dataset which is widely used for object detection evaluations and the boulder dataset that we constructed from the images of Bennu asteroid, the evaluation results have shown that the improvements have increased the performance of YOLOv5 by 3.4% in precision. With the improved YOLOv5 detection method, the pyramid based approach extracts several layers of images with different resolutions from the large planetary images and detects boulders of different scales from different layers. We have also applied the proposed approach to detect the boulders on Bennu asteroid. The distribution of the boulders on Bennu asteroid has been analyzed and presented.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

          State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features-using the recently popular terminology of neural networks with 'attention' mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3], our detection system has a frame rate of 5fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adam: A Method for Stochastic Optimization

            We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm. Published as a conference paper at the 3rd International Conference for Learning Representations, San Diego, 2015
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Very Deep Convolutional Networks for Large-Scale Image Recognition

              In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.
                Bookmark

                Author and article information

                Contributors
                Journal
                Remote Sensing
                Remote Sensing
                MDPI AG
                2072-4292
                September 2021
                September 20 2021
                : 13
                : 18
                : 3776
                Article
                10.3390/rs13183776
                57e1b7c7-9e29-4e1e-9510-3525f14d0a63
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article