32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reactive oxygen species-mediated apoptosis contributes to chemosensitization effect of saikosaponins on cisplatin-induced cytotoxicity in cancer cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Saikosaponin-a and -d, two naturally occurring compounds derived from Bupleurum radix, have been shown to exert anti-cancer activity in several cancer cell lines. However, the effect of combination of saikosaponins with chemotherapeutic drugs has never been addressed. Thus, we investigated whether these two saikosaponins have chemosensitization effect on cisplatin-induced cancer cell cytotoxicity.

          Methods

          Two cervical cancer cell lines, HeLa and Siha, an ovarian cancer cell line, SKOV3, and a non-small cell lung cancer cell line, A549, were treated with saikosaponins or cisplatin individually or in combination. Cell death was quantitatively detected by the release of lactate dehydrogenase (LDH) using a cytotoxicity detection kit. Cellular ROS was analyzed by flow cytometry. Apoptosis was evaluated by AO/EB staining, flow cytometry after Anexin V and PI staining, and Western blot for caspase activation. ROS scavengers and caspase inhibitor were used to determine the roles of ROS and apoptosis in the effects of saikosaponins on cisplatin-induced cell death.

          Results

          Both saikosaponin-a and -d sensitized cancer cells to cisplatin-induced cell death in a dose-dependent manner, which was accompanied with induction of reactive oxygen species (ROS) accumulation. The dead cells showed typical apoptotic morphologies. Both early apoptotic and late apoptotic cells detected by flow cytometry were increased in saikosaponins and cisplatin cotreated cells, accompanied by activation of the caspase pathway. The pan-caspase inhibitor z-VAD and ROS scanvengers butylated hydroxyanisole (BHA) and N-acetyl-L-cysteine (NAC) dramatically suppressed the potentiated cytotoxicity achieved by combination of saikosaponin-a or -d and cisplatin.

          Conclusions

          These results suggest that saikosaponins sensitize cancer cells to cisplatin through ROS-mediated apoptosis, and the combination of saikosaponins with cisplatin could be an effective therapeutic strategy.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Luteolin, a flavonoid with potential for cancer prevention and therapy.

          Luteolin, 3',4',5,7-tetrahydroxyflavone, is a common flavonoid that exists in many types of plants including fruits, vegetables, and medicinal herbs. Plants rich in luteolin have been used in Chinese traditional medicine for treating various diseases such as hypertension, inflammatory disorders, and cancer. Having multiple biological effects such as anti-inflammation, anti-allergy and anticancer, luteolin functions as either an antioxidant or a pro-oxidant biochemically. The biological effects of luteolin could be functionally related to each other. For instance, the anti-inflammatory activity may be linked to its anticancer property. Luteolin's anticancer property is associated with the induction of apoptosis, and inhibition of cell proliferation, metastasis and angiogenesis. Furthermore, luteolin sensitizes cancer cells to therapeutic-induced cytotoxicity through suppressing cell survival pathways such as phosphatidylinositol 3'-kinase (PI3K)/Akt, nuclear factor kappa B (NF-kappaB), and X-linked inhibitor of apoptosis protein (XIAP), and stimulating apoptosis pathways including those that induce the tumor suppressor p53. These observations suggest that luteolin could be an anticancer agent for various cancers. Furthermore, recent epidemiological studies have attributed a cancer prevention property to luteolin. In this review, we summarize the progress of recent research on luteolin, with a particular focus on its anticancer role and molecular mechanisms underlying this property of luteolin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sustained activation of JNK/p38 MAPK pathways in response to cisplatin leads to Fas ligand induction and cell death in ovarian carcinoma cells.

            The efficacy of cisplatin in cancer chemotherapy is limited by the development of resistance. Although the molecular mechanisms involved in chemoresistance are poorly understood, cellular response to cisplatin is known to involve activation of MAPK and other signal transduction pathways. An understanding of early signal transduction events in the response to cisplatin could be valuable for improving the efficacy of cancer therapy. We compared cisplatin-induced activation of three MAPKs, JNK, p38, and ERK, in a cisplatin-sensitive human ovarian carcinoma cell line (2008) and its resistant subclone (2008C13). The JNK and p38 pathways were activated differentially in response to cisplatin, with the cisplatin-sensitive cells showing prolonged activation (8-12 h) and the cisplatin-resistant cells showing only transient activation (1-3 h) of JNK and p38. In the sensitive cells, inhibition of cisplatin-induced JNK and p38 activation blocked cisplatin-induced apoptosis; persistent activation of JNK resulted in hyperphosphorylation of the c-Jun transcription factor, which in turn stimulated the transcription of an immediate downstream target, the death inducer Fas ligand (FasL). Sequestration of FasL by incubation with a neutralizing anti-FasL antibody inhibited cisplatin-induced apoptosis. In contrast, chemoresistance in 2008C13 cells was associated with failure to up-regulate FasL. Moreover, in these cells, selective stimulation of the JNK/p38 MAPK pathways by adenovirus-mediated delivery of recombinant MKK7 or MKK3 led to sensitization to apoptosis through reactivating FasL expression. Thus, the JNK > c-Jun > FasL > Fas pathway plays an important role in mediating cisplatin-induced apoptosis in ovarian cancer cells, and the duration of JNK activation is critical in determining whether cells survive or undergo apoptosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cisplatin: from DNA damage to cancer chemotherapy.

              Cisplatin [cis-DDP, cis-diamminedichloroplatinum(II)] is a potent anticancer drug that has been used successfully to treat tumors of the head, neck, lungs, and genitourinary tract. The biological activity of cisplatin was discovered serendipitously more than 30 years ago, and since that time research efforts have focused on elucidating its mechanism of action. The present review provides a historical perspective of our attempts to understand this complex phenomenon and the results of recent work that guides our current activities in this field. Continued efforts to understand the mechanism of genotoxicity of cisplatin are expected to lead to the discovery of new drugs and combinations for the improvement of cancer chemotherapy.
                Bookmark

                Author and article information

                Journal
                J Exp Clin Cancer Res
                Journal of Experimental & Clinical Cancer Research : CR
                BioMed Central
                0392-9078
                1756-9966
                2010
                9 December 2010
                : 29
                : 1
                : 159
                Affiliations
                [1 ]Laboratory of Molecular and Translational Medicine, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu 610041, PR China
                [2 ]Department of Forensic Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, PR China
                [3 ]Department of Forensic Analytical Toxicology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, PR China
                Article
                1756-9966-29-159
                10.1186/1756-9966-29-159
                3006358
                21143894
                57a23c75-f979-4ca9-9445-50be0ee39cee
                Copyright ©2010 Wang et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<url>http://creativecommons.org/licenses/by/2.0</url>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 September 2010
                : 9 December 2010
                Categories
                Research

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article