3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Polyploid giant cancer cells and cancer progression

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Polyploid giant cancer cells (PGCCs) are an important feature of cellular atypia, the detailed mechanisms of their formation and function remain unclear. PGCCs were previously thought to be derived from repeated mitosis/cytokinesis failure, with no intrinsic ability to proliferate and divide. However, recently, PGCCs have been confirmed to have cancer stem cell (CSC)-like characteristics, and generate progeny cells through asymmetric division, which express epithelial-mesenchymal transition-related markers to promote invasion and migration. The formation of PGCCs can be attributed to multiple stimulating factors, including hypoxia, chemotherapeutic reagents, and radiation, can induce the formation of PGCCs, by regulating the cell cycle and cell fusion-related protein expression. The properties of CSCs suggest that PGCCs can be induced to differentiate into non-tumor cells, and produce erythrocytes composed of embryonic hemoglobin, which have a high affinity for oxygen, and thereby allow PGCCs survival from the severe hypoxia. The number of PGCCs is associated with metastasis, chemoradiotherapy resistance, and recurrence of malignant tumors. Targeting relevant proteins or signaling pathways related with the formation and transdifferentiation of adipose tissue and cartilage in PGCCs may provide new strategies for solid tumor therapy.

          Related collections

          Most cited references134

          • Record: found
          • Abstract: found
          • Article: not found

          The epithelial-mesenchymal transition generates cells with properties of stem cells.

          The epithelial-mesenchymal transition (EMT) is a key developmental program that is often activated during cancer invasion and metastasis. We here report that the induction of an EMT in immortalized human mammary epithelial cells (HMLEs) results in the acquisition of mesenchymal traits and in the expression of stem-cell markers. Furthermore, we show that those cells have an increased ability to form mammospheres, a property associated with mammary epithelial stem cells. Independent of this, stem cell-like cells isolated from HMLE cultures form mammospheres and express markers similar to those of HMLEs that have undergone an EMT. Moreover, stem-like cells isolated either from mouse or human mammary glands or mammary carcinomas express EMT markers. Finally, transformed human mammary epithelial cells that have undergone an EMT form mammospheres, soft agar colonies, and tumors more efficiently. These findings illustrate a direct link between the EMT and the gain of epithelial stem cell properties.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clonal evolution in cancer.

            Cancers evolve by a reiterative process of clonal expansion, genetic diversification and clonal selection within the adaptive landscapes of tissue ecosystems. The dynamics are complex, with highly variable patterns of genetic diversity and resulting clonal architecture. Therapeutic intervention may destroy cancer clones and erode their habitats, but it can also inadvertently provide a potent selective pressure for the expansion of resistant variants. The inherently Darwinian character of cancer is the primary reason for this therapeutic failure, but it may also hold the key to more effective control.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse.

              Cellular senescence suppresses cancer by irreversibly arresting cell proliferation. Senescent cells acquire a proinflammatory senescence-associated secretory phenotype. Many genotoxic chemotherapies target proliferating cells nonspecifically, often with adverse reactions. In accord with prior work, we show that several chemotherapeutic drugs induce senescence of primary murine and human cells. Using a transgenic mouse that permits tracking and eliminating senescent cells, we show that therapy-induced senescent (TIS) cells persist and contribute to local and systemic inflammation. Eliminating TIS cells reduced several short- and long-term effects of the drugs, including bone marrow suppression, cardiac dysfunction, cancer recurrence, and physical activity and strength. Consistent with our findings in mice, the risk of chemotherapy-induced fatigue was significantly greater in humans with increased expression of a senescence marker in T cells prior to chemotherapy. These findings suggest that senescent cells can cause certain chemotherapy side effects, providing a new target to reduce the toxicity of anticancer treatments.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                05 October 2022
                2022
                : 10
                : 1017588
                Affiliations
                [1] 1 Graduate School , Tianjin Medical University , Tianjin, China
                [2] 2 Department of Pathology , Tianjin Union Medical Center , Tianjin, China
                [3] 3 Nankai University School of Medicine , Nankai University , Tianjin, China
                [4] 4 Department of Colorectal Surgery , Tianjin Union Medical Center , Tianjin, China
                Author notes
                *Correspondence: Shiwu Zhang, zhangshiwu666@ 123456aliyun.com
                [ † ]

                These authors have contributed equally to this work

                Edited by: Haitao Zhang, Tulane University, United States

                Reviewed by: Robert H. Austin, Princeton University, United States

                Georges Herbein, University of Franche-Comté, France

                This article was submitted to Cancer Cell Biology, a section of the journal Frontiers in Cell and Developmental Biology

                Article
                1017588
                10.3389/fcell.2022.1017588
                9581214
                36274852
                578ba9e6-a5b2-4ec7-9521-9a2340ec0202
                Copyright © 2022 Zhou, Zhou, Zheng, Tian, Yang, Ning, Li and Zhang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 12 August 2022
                : 21 September 2022
                Funding
                Funded by: National Natural Science Foundation of China , doi 10.13039/501100001809;
                Categories
                Cell and Developmental Biology
                Review

                polyploid giant cancer cells,cancer stem cells,epithelial-mesenchymal transition,chemoradiotherapy resistance,tumor budding,micropapillary pattern

                Comments

                Comment on this article