The variable \sqrt{s}_{min} was originally proposed in arXiv:0812.1042 as a model-independent, global and fully inclusive measure of the new physics mass scale in missing energy events at hadron colliders. In the original incarnation of \sqrt{s}_{min}, however, the connection to the new physics mass scale was blurred by the effects of the underlying event, most notably initial state radiation and multiple parton interactions. In this paper we advertize two improved variants of the \sqrt{s}_{min} variable, which overcome this problem. First we show that by evaluating the \sqrt{s}_{min} variable at the RECO level, in terms of the reconstructed objects in the event, the effects from the underlying event are significantly diminished and the nice correlation between the peak in the \sqrt{s}_{min}^{(reco)} distribution and the new physics mass scale is restored. Secondly, the underlying event problem can be avoided altogether when the \sqrt{s}_{min} concept is applied to a subsystem of the event which does not involve any QCD jets. We supply an analytic formula for the resulting subsystem \sqrt{s}_{min}^{(sub)} variable and show that its peak exhibits the usual correlation with the mass scale of the particles produced in the subsystem. Finally, we contrast \sqrt{s}_{min} to other popular inclusive variables such as H_T, M_{Tgen} and M_{TTgen}. We illustrate our discussion with several examples from supersymmetry, and with dilepton events from top quark pair production.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.