25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      From warrior genes to translational solutions: novel insights into monoamine oxidases (MAOs) and aggression

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The pervasive and frequently devastating nature of aggressive behavior calls for a collective effort to understand its psychosocial and neurobiological underpinnings. Regarding the latter, diverse brain areas, neural networks, neurotransmitters, hormones, and candidate genes have been associated with antisocial and aggressive behavior in humans and animals. This review focuses on the role of monoamine oxidases (MAOs) and the genes coding for them, in the modulation of aggression. During the past 20 years, a substantial number of studies using both pharmacological and genetic approaches have linked the MAO system with aggressive and impulsive behaviors in healthy and clinical populations, including the recent discovery of MAALIN, a long noncoding RNA (lncRNA) regulating the MAO-A gene in the human brain. Here, we first provide an overview of the MAOs and their physiological functions, we then summarize recent key findings linking MAO-related enzymatic and gene activity and aggressive behavior, and, finally, we offer novel insights into the mechanisms underlying this association. Using the existing experimental evidence as a foundation, we discuss the translational implications of these findings in clinical practice and highlight what we believe are outstanding conceptual and methodological questions in the field. Ultimately, we propose that unraveling the specific role of MAO in aggression requires an integrated approach, where this question is pursued by combining psychological, radiological, and genetic/genomic assessments. The translational benefits of such an approach include the discovery of novel biomarkers of aggression and targeting the MAO system to modulate pathological aggression in clinical populations.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: not found

          Serotonin, tryptophan metabolism and the brain-gut-microbiome axis.

          The brain-gut axis is a bidirectional communication system between the central nervous system and the gastrointestinal tract. Serotonin functions as a key neurotransmitter at both terminals of this network. Accumulating evidence points to a critical role for the gut microbiome in regulating normal functioning of this axis. In particular, it is becoming clear that the microbial influence on tryptophan metabolism and the serotonergic system may be an important node in such regulation. There is also substantial overlap between behaviours influenced by the gut microbiota and those which rely on intact serotonergic neurotransmission. The developing serotonergic system may be vulnerable to differential microbial colonisation patterns prior to the emergence of a stable adult-like gut microbiota. At the other extreme of life, the decreased diversity and stability of the gut microbiota may dictate serotonin-related health problems in the elderly. The mechanisms underpinning this crosstalk require further elaboration but may be related to the ability of the gut microbiota to control host tryptophan metabolism along the kynurenine pathway, thereby simultaneously reducing the fraction available for serotonin synthesis and increasing the production of neuroactive metabolites. The enzymes of this pathway are immune and stress-responsive, both systems which buttress the brain-gut axis. In addition, there are neural processes in the gastrointestinal tract which can be influenced by local alterations in serotonin concentrations with subsequent relay of signals along the scaffolding of the brain-gut axis to influence CNS neurotransmission. Therapeutic targeting of the gut microbiota might be a viable treatment strategy for serotonin-related brain-gut axis disorders. Copyright © 2014 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Accurate classification of BRCA1 variants with saturation genome editing

            Variants of uncertain significance (VUS) fundamentally limit the clinical utility of genetic information. The challenge they pose is epitomized by BRCA1, a tumor suppressor in which germline loss-of-function variants predispose women to breast and ovarian cancer. Although BRCA1 has been sequenced in millions of women, the risk associated with most newly observed variants cannot be definitively assigned. Here, we employ saturation genome editing to assay 96.5% of all possible single nucleotide variants (SNVs) in 13 exons encoding functionally critical domains of BRCA1. Functional effects for nearly 4,000 SNVs are bimodally distributed and almost perfectly concordant with established assessments of pathogenicity. Over 400 non-functional missense SNVs are identified, as well as ~300 SNVs that disrupt expression. We predict that these results will be immediately useful for clinical interpretation of BRCA1 variants, and that this paradigm can be extended to overcome the challenge of VUS in additional clinically actionable genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neurobiology of aggression and violence.

              Acts of violence account for an estimated 1.43 million deaths worldwide annually. While violence can occur in many contexts, individual acts of aggression account for the majority of instances. In some individuals, repetitive acts of aggression are grounded in an underlying neurobiological susceptibility that is just beginning to be understood. The failure of "top-down" control systems in the prefrontal cortex to modulate aggressive acts that are triggered by anger provoking stimuli appears to play an important role. An imbalance between prefrontal regulatory influences and hyper-responsivity of the amygdala and other limbic regions involved in affective evaluation are implicated. Insufficient serotonergic facilitation of "top-down" control, excessive catecholaminergic stimulation, and subcortical imbalances of glutamatergic/gabaminergic systems as well as pathology in neuropeptide systems involved in the regulation of affiliative behavior may contribute to abnormalities in this circuitry. Thus, pharmacological interventions such as mood stabilizers, which dampen limbic irritability, or selective serotonin reuptake inhibitors (SSRIs), which may enhance "top-down" control, as well as psychosocial interventions to develop alternative coping skills and reinforce reflective delays may be therapeutic.
                Bookmark

                Author and article information

                Contributors
                chrousos@gmail.com
                Journal
                Transl Psychiatry
                Transl Psychiatry
                Translational Psychiatry
                Nature Publishing Group UK (London )
                2158-3188
                18 February 2021
                18 February 2021
                2021
                : 11
                : 130
                Affiliations
                [1 ]GRID grid.418497.7, Public Health Laboratories, Hellenic Pasteur Institute, ; Vas. Sofias Avenue 127, 115 21 Athens, Greece
                [2 ]GRID grid.410558.d, ISNI 0000 0001 0035 6670, Department of Neurology, , University of Thessaly, ; Panepistimiou 3, Viopolis, 41 500 Larissa, Greece
                [3 ]GRID grid.4991.5, ISNI 0000 0004 1936 8948, Department of Experimental Psychology, , Oxford University, ; Oxford, UK
                [4 ]University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Medical School, Aghia Sophia Children’s Hospital, Livadias 8, 115 27 Athens, Greece
                [5 ]UNESCO Chair on Adolescent Health Care, Athens, Greece
                Author information
                http://orcid.org/0000-0002-1480-390X
                http://orcid.org/0000-0003-2957-641X
                http://orcid.org/0000-0002-3098-5264
                Article
                1257
                10.1038/s41398-021-01257-2
                7892552
                33602896
                5757db88-9ad1-4a73-9a8c-f79a5f41258d
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 28 July 2020
                : 16 January 2021
                : 1 February 2021
                Categories
                Review Article
                Custom metadata
                © The Author(s) 2021

                Clinical Psychology & Psychiatry
                molecular neuroscience,psychiatric disorders,clinical pharmacology

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content557

                Cited by9

                Most referenced authors1,179