425
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increased resting state functional connectivity in the fronto-parietal and default mode network in anorexia nervosa

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The etiology of anorexia nervosa (AN) is poorly understood. Results from functional brain imaging studies investigating the neural profile of AN using cognitive and emotional task paradigms are difficult to reconcile. Task-related imaging studies often require a high level of compliance and can only partially explore the distributed nature and complexity of brain function. In this study, resting state functional connectivity imaging was used to investigate well-characterized brain networks potentially relevant to understand the neural mechanisms underlying the symptomatology and etiology of AN. Resting state functional magnetic resonance imaging data was obtained from 35 unmedicated female acute AN patients and 35 closely matched healthy controls female participants (HC) and decomposed using spatial group independent component analyses (ICA). Using validated templates, we identified components covering the fronto-parietal “control” network, the default mode network (DMN), the salience network, the visual and the sensory-motor network. Group comparison revealed an increased functional connectivity between the angular gyrus and the other parts of the fronto-parietal network in patients with AN in comparison to HC. Connectivity of the angular gyrus was positively associated with self-reported persistence in HC. In the DMN, AN patients also showed an increased functional connectivity strength in the anterior insula in comparison to HC. Anterior insula connectivity was associated with self-reported problems with interoceptive awareness. This study, with one of the largest sample to date, shows that acute AN is associated with abnormal brain connectivity in two major resting state networks (RSN). The finding of an increased functional connectivity in the fronto-parietal network adds novel support for the notion of AN as a disorder of excessive cognitive control, whereas the elevated functional connectivity of the anterior insula with the DMN may reflect the high levels of self- and body-focused ruminations when AN patients are at rest.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing Framework in Python

          Current neuroimaging software offer users an incredible opportunity to analyze their data in different ways, with different underlying assumptions. Several sophisticated software packages (e.g., AFNI, BrainVoyager, FSL, FreeSurfer, Nipy, R, SPM) are used to process and analyze large and often diverse (highly multi-dimensional) data. However, this heterogeneous collection of specialized applications creates several issues that hinder replicable, efficient, and optimal use of neuroimaging analysis approaches: (1) No uniform access to neuroimaging analysis software and usage information; (2) No framework for comparative algorithm development and dissemination; (3) Personnel turnover in laboratories often limits methodological continuity and training new personnel takes time; (4) Neuroimaging software packages do not address computational efficiency; and (5) Methods sections in journal articles are inadequate for reproducing results. To address these issues, we present Nipype (Neuroimaging in Python: Pipelines and Interfaces; http://nipy.org/nipype), an open-source, community-developed, software package, and scriptable library. Nipype solves the issues by providing Interfaces to existing neuroimaging software with uniform usage semantics and by facilitating interaction between these packages using Workflows. Nipype provides an environment that encourages interactive exploration of algorithms, eases the design of Workflows within and between packages, allows rapid comparative development of algorithms and reduces the learning curve necessary to use different packages. Nipype supports both local and remote execution on multi-core machines and clusters, without additional scripting. Nipype is Berkeley Software Distribution licensed, allowing anyone unrestricted usage. An open, community-driven development philosophy allows the software to quickly adapt and address the varied needs of the evolving neuroimaging community, especially in the context of increasing demand for reproducible research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions.

            Classic cognitive theory conceptualizes executive functions as involving multiple specific domains, including initiation, inhibition, working memory, flexibility, planning, and vigilance. Lesion and neuroimaging experiments over the past two decades have suggested that both common and unique processes contribute to executive functions during higher cognition. It has been suggested that a superordinate fronto-cingulo-parietal network supporting cognitive control may also underlie a range of distinct executive functions. To test this hypothesis in the largest sample to date, we used quantitative meta-analytic methods to analyze 193 functional neuroimaging studies of 2,832 healthy individuals, ages 18-60, in which performance on executive function measures was contrasted with an active control condition. A common pattern of activation was observed in the prefrontal, dorsal anterior cingulate, and parietal cortices across executive function domains, supporting the idea that executive functions are supported by a superordinate cognitive control network. However, domain-specific analyses showed some variation in the recruitment of anterior prefrontal cortex, anterior and midcingulate regions, and unique subcortical regions such as the basal ganglia and cerebellum. These results are consistent with the existence of a superordinate cognitive control network in the brain, involving dorsolateral prefrontal, anterior cingulate, and parietal cortices, that supports a broad range of executive functions.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Algorithms for the Assignment and Transportation Problems

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Behav Neurosci
                Front Behav Neurosci
                Front. Behav. Neurosci.
                Frontiers in Behavioral Neuroscience
                Frontiers Media S.A.
                1662-5153
                02 October 2014
                2014
                : 8
                : 346
                Affiliations
                [1] 1Department of Child and Adolescent Psychiatry, Translational Developmental Neuroscience Section, Eating Disorder Services and Research Center, Faculty of Medicine, University Hospital C. G. Carus, Technische Universität Dresden Dresden, Germany
                [2] 2Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, University Hospital C. G. Carus, Technische Universität Dresden Dresden, Germany
                [3] 3Department of Psychiatry, Otto-von-Guericke University Magdeburg, Germany
                [4] 4MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital Charlestown, MA, USA
                [5] 5Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital Boston, MA, USA
                Author notes

                Edited by: Guido Frank, University of Colorado Anschutz Medical Campus, USA

                Reviewed by: Franziska Plessow, Harvard Medical School, USA; Frauke Nees, Central Institute of Mental Health, Germany

                *Correspondence: Stefan Ehrlich, Department of Child and Adolescent Psychiatry, Translational Developmental Neuroscience Section, Eating Disorder Services and Research Center, Faculty of Medicine, University Hospital C. G. Carus, Technische Universität Dresden, Fetscherstraβe 74, 01307 Dresden, Germany e-mail: transden.lab@ 123456gmail.com

                This article was submitted to the journal Frontiers in Behavioral Neuroscience.

                Article
                10.3389/fnbeh.2014.00346
                4183185
                25324749
                57347189-5404-42bf-9c2d-d2cd05687237
                Copyright © 2014 Boehm, Geisler, King, Ritschel, Seidel, Deza Araujo, Petermann, Lohmeier, Weiss, Walter, Roessner and Ehrlich.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 19 July 2014
                : 13 September 2014
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 90, Pages: 11, Words: 8926
                Categories
                Neuroscience
                Original Research Article

                Neurosciences
                anorexia nervosa,fmri,resting state connectivity,fronto-parietal network,default mode network,insula,cognitive control,interoceptive awareness

                Comments

                Comment on this article