42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      LncRNA SNHG7 sponges miR-216b to promote proliferation and liver metastasis of colorectal cancer through upregulating GALNT1

      research-article
      , , , , ,
      Cell Death & Disease
      Nature Publishing Group UK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Accumulating evidence suggests long noncoding RNAs (lncRNAs) play an important role in cancer progression. However, the function of lncRNA SNHG7 in colorectal cancer (CRC) remains unclear. In this study, SNHG7 expression was significantly upregulated in CRC tissues, especially in aggressive cases. In accordance, high level of SNHG7 was observed in CRC cell lines compared to normal colon cells. Furthermore, SNHG7 overexpression promoted the proliferation, migration, and invasion of CRC cell lines, while SNHG7 depletion inhibited invasion and cell viability in vitro. Mechanistically, knockdown of SNHG7 inhibited GALNT1 and EMT markers (E-cadherin and Vimentin). Importantly, SNHG7 directly interacted with miR-216b and downregulation of miR-216b reversed efficiently the suppression of GALNT1 induced by SNHG7 siRNA. Moreover, overexpression of SNHG7 significantly enhanced the tumorigenesis and liver metastasis of SW480 cells in vivo. SNHG7 positively regulated GALNT1 level through sponging miR-216b, and played an oncogenic role in CRC progression. Together, our study elucidated the role of SNHG7 as an miRNA sponge in CRC, and shed new light on lncRNA-directed diagnostics and therapeutics in CRC.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family.

          Glycosylation of proteins is an essential process in all eukaryotes and a great diversity in types of protein glycosylation exists in animals, plants and microorganisms. Mucin-type O-glycosylation, consisting of glycans attached via O-linked N-acetylgalactosamine (GalNAc) to serine and threonine residues, is one of the most abundant forms of protein glycosylation in animals. Although most protein glycosylation is controlled by one or two genes encoding the enzymes responsible for the initiation of glycosylation, i.e. the step where the first glycan is attached to the relevant amino acid residue in the protein, mucin-type O-glycosylation is controlled by a large family of up to 20 homologous genes encoding UDP-GalNAc:polypeptide GalNAc-transferases (GalNAc-Ts) (EC 2.4.1.41). Therefore, mucin-type O-glycosylation has the greatest potential for differential regulation in cells and tissues. The GalNAc-T family is the largest glycosyltransferase enzyme family covering a single known glycosidic linkage and it is highly conserved throughout animal evolution, although absent in bacteria, yeast and plants. Emerging studies have shown that the large number of genes (GALNTs) in the GalNAc-T family do not provide full functional redundancy and single GalNAc-T genes have been shown to be important in both animals and human. Here, we present an overview of the GalNAc-T gene family in animals and propose a classification of the genes into subfamilies, which appear to be conserved in evolution structurally as well as functionally.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro.

            microRNAs (miRNA) are involved in cancer development and progression, acting as tumor suppressors or oncogenes. Here, we profiled the expression of 290 unique human miRNAs in 11 normal and 106 bladder tumor samples using spotted locked nucleic acid-based oligonucleotide microarrays. We identified several differentially expressed miRNAs between normal urothelium and cancer and between the different disease stages. miR-145 was found to be the most down-regulated in cancer compared with normal, and miR-21 was the most up-regulated in cancer. Furthermore, we identified miRNAs that significantly correlated to the presence of concomitant carcinoma in situ. We identified several miRNAs with prognostic potential for predicting disease progression (e.g., miR-129, miR-133b, and miR-518c*). We localized the expression of miR-145, miR-21, and miR-129 to urothelium by in situ hybridization. We then focused on miR-129 that exerted significant growth inhibition and induced cell death upon transfection with a miR-129 precursor in bladder carcinoma cell lines T24 and SW780 cells. Microarray analysis of T24 cells after transfection showed significant miR-129 target down-regulation (P = 0.0002) and pathway analysis indicated that targets were involved in cell death processes. By analyzing gene expression data from clinical tumor samples, we identified significant expression changes of target mRNA molecules related to the miRNA expression. Using luciferase assays, we documented a direct link between miR-129 and the two putative targets GALNT1 and SOX4. The findings reported here indicate that several miRNAs are differentially regulated in bladder cancer and may form a basis for clinical development of new biomarkers for bladder cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              HOTAIR long non-coding RNA is a negative prognostic factor not only in primary tumors, but also in the blood of colorectal cancer patients.

              Colorectal cancer (CRC) is one of the main causes of death of neoplasia. Demand for predictive and prognostic markers to reverse this trend is increasing. Long non-coding RNA HOTAIR (Homeobox Transcript Antisense Intergenic RNA) overexpression in tumors was previously associated with poor prognosis and higher mortality in different carcinomas. We analyzed HOTAIR expression levels in tumor and blood of incident sporadic CRC patients in relation to their overall survival with the aim to evaluate surrogate prognostic marker for CRC. Tissue donor group consisted of 73 CRC patients sampled for tumor and normal tissue. Blood donor group was represented by 84 CRC patients compared with 40 healthy controls. Patients were characterized for tumor-node-metastasis stage, tumor grade, microsatellite instability and tumor penetration by stromal cells. HOTAIR levels were assessed by real-time quantitative PCR. CRC patients had higher HOTAIR expression in blood than healthy controls (P = 0.0001), whereas there was no difference in HOTAIR levels between tumor and adjacent mucosa of CRC patients. HOTAIR levels positively correlated between blood and tumor (R = 0.43, P = 0.03). High HOTAIR levels in tumors were associated with higher mortality of patients [Cox's proportional hazard, hazard ratio = 4.4, 95% confidence interval: 1.0-19.2, P = 0.046]. The hazard ratio was even higher when blood HOTAIR levels were taken into account (hazard ratio = 5.9, 95% confidence interval: 1.3-26.1, P = 0.019). Upregulated HOTAIR relative expression in primary tumors and in blood of CRC patients is associated with unfavorable prognosis. Our data suggest that HOTAIR blood levels may serve as potential surrogate prognostic marker in sporadic CRC. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
                Bookmark

                Author and article information

                Contributors
                jiali0386@sina.com
                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group UK (London )
                2041-4889
                18 June 2018
                18 June 2018
                July 2018
                : 9
                : 7
                : 722
                Affiliations
                ISNI 0000 0000 9558 1426, GRID grid.411971.b, College of Laboratory Medicine, , Dalian Medical University, ; 116044 Dalian, Liaoning Province China
                Author information
                http://orcid.org/0000-0003-3152-3253
                Article
                759
                10.1038/s41419-018-0759-7
                6006356
                29915311
                571bef28-2370-4c6c-b8cd-3d97bd75ea3b
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 12 March 2018
                : 11 May 2018
                : 4 June 2018
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001809, National Natural Science Foundation of China (National Science Foundation of China);
                Award ID: 81772277
                Award ID: 81772277
                Award ID: 81772277
                Award ID: 81772277
                Award ID: 81772277
                Award ID: 81772277
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Cell biology
                Cell biology

                Comments

                Comment on this article