10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Novel ginsenoside-based multifunctional liposomal delivery system for combination therapy of gastric cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The clinical treatment of gastric cancer (GC) is hampered by the development of anticancer drug resistance and the unfavorable pharmacokinetics, off-target toxicity, and inadequate intratumoral accumulation of the current chemotherapy treatments. Ginsenosides combined with paclitaxel (PTX) have been shown to exert synergistic inhibition of human GC cell proliferation. In the present study, we developed a novel multifunctional liposome system, in which ginsenosides functioned as the chemotherapy adjuvant and membrane stabilizer. These had long blood circulation times and active targeting abilities, thus creating multifunctionality of the liposomes and facilitating drug administration to the GC cells.

          Methods: Three ginsenosides with different structures were used to formulate the unique nanocarrier, which was prepared using the thin-film hydration method. The stability of the ginsenoside liposomes was determined by particle size analysis using dynamic light scattering. The long circulation time of ginsenoside liposomes was compared with that of conventional liposome and polyethylene glycosylated liposomes in vivo. The active targeting effect of ginsenoside liposomes was examined with a GC xenograft model using an in vivo imaging system. To examine the antitumor activity of ginsenoside liposomes against GC, MTT, cell cycle, and apoptosis assays were performed on BGC-823 cells in vitro and PTX-loaded ginsenoside liposomes were prepared to evaluate the therapeutic efficacy on GC in vivo.

          Results: The ginsenosides stabilized the liposomes in a manner similar to cholesterol. We confirmed the successful delivery of the bioactive combination drugs and internalization into GC cells via analysis of the glucose-related transporter recognition and longer blood circulation time. PTX was encapsulated in different liposomal formulations for use as a combination therapy, in which ginsenosides were found to exert their inherent anticancer activity, as well as act synergistically with PTX. The combination therapy using these targeted liposomes significantly suppressed GC tumor growth and outperformed most reported PTX formulations, including Lipusu ® and Abraxane ®.

          Conclusion: We established novel ginsenoside-based liposomes as a tumor-targeting therapy, in which ginsenoside functioned not only as a chemotherapy adjuvant, but also as a functional membrane material. Ginsenoside-based liposomes offer a novel platform for anticancer drug delivery and may lead to a new era of nanocarrier treatments for cancer.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Nanodrug Delivery: Is the Enhanced Permeability and Retention Effect Sufficient for Curing Cancer?

          Nanotechnology offers several attractive design features that have prompted its exploration for cancer diagnosis and treatment. Nanosized drugs have a large loading capacity, the ability to protect the payload from degradation, a large surface on which to conjugate targeting ligands, and controlled or sustained release. Nanosized drugs also leak preferentially into tumor tissue through permeable tumor vessels and are then retained in the tumor bed due to reduced lymphatic drainage. This process is known as the enhanced permeability and retention (EPR) effect. However, while the EPR effect is widely held to improve delivery of nanodrugs to tumors, it in fact offers less than a 2-fold increase in nanodrug delivery compared with critical normal organs, resulting in drug concentrations that are not sufficient for curing most cancers. In this Review, we first overview various barriers for nanosized drug delivery with an emphasis on the capillary wall's resistance, the main obstacle to delivering drugs. Then, we discuss current regulatory issues facing nanomedicine. Finally, we discuss how to make the delivery of nanosized drugs to tumors more effective by building on the EPR effect.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Route to Rheumatoid Arthritis by Macrophage-Derived Microvesicle-Coated Nanoparticles

            The targeted delivery of therapeutics to sites of rheumatoid arthritis (RA) has been a long-standing challenge. Inspired by the intrinsic inflammation-targeting capacity of macrophages, a macrophage-derived microvesicle (MMV)-coated nanoparticle (MNP) was developed for targeting RA. The MMV was efficiently produced through a novel method. Cytochalasin B (CB) was applied to relax the interaction between the cytoskeleton and membrane of macrophages, thus stimulating MMV secretion. The proteomic profile of the MMV was analyzed by iTRAQ (isobaric tags for relative and absolute quantitation). The MMV membrane proteins were similar to those of macrophages, indicating that the MMV could exhibit bioactivity similar to that of RA-targeting macrophages. A poly(lactic- co-glycolic acid) (PLGA) nanoparticle was subsequently coated with MMV, and the inflammation-mediated targeting capacity of the MNP was evaluated both in vitro and in vivo. The in vitro binding of MNP to inflamed HUVECs was significantly stronger than that of the red blood cell membrane-coated nanoparticle (RNP). Compared with bare NP and RNP, MNP showed a significantly enhanced targeting effect in vivo in a collagen-induced arthritis (CIA) mouse model. The targeting mechanism was subsequently revealed according to the proteomic analysis, indicating that Mac-1 and CD44 contributed to the outstanding targeting effect of the MNP. A model drug, tacrolimus, was encapsulated in MNP (T-RNP) and significantly suppressed the progression of RA in mice. The present study demonstrates MMV as a promising and rich material, with which to mimic macrophages, and demonstrates that MNP is an efficient biomimetic vehicle for RA targeting and treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Peptide-22 and Cyclic RGD Functionalized Liposomes for Glioma Targeting Drug Delivery Overcoming BBB and BBTB.

              Chemotherapy outcomes for the treatment of glioma remain unsatisfied due to the inefficient drug transport across BBB/BBTB and poor drug accumulation in the tumor site. Nanocarriers functionalized with different targeting ligands are considered as one of the most promising alternatives. However, few studies were reported to compare the targeting efficiency of the ligands and develop nanoparticles to realize BBB/BBTB crossing and brain tumor targeting simultaneously. In this study, six peptide-based ligands (Angiopep-2, T7, Peptide-22, c(RGDfK), D-SP5 and Pep-1), widely used for brain delivery, were selected to decorate liposomes, respectively, so as to compare their targeting ability to BBB or BBTB. Based on the in vitro cellular uptake results on BCECs and HUVECs, Peptide-22 and c(RGDfK) were picked to construct a BBB/BBTB dual-crossing, glioma-targeting liposomal drug delivery system c(RGDfK)/Pep-22-DOX-LP. In vitro cellular uptake demonstrated that the synergetic effect of c(RGDfK) and Peptide-22 could significantly increase the internalization of liposomes on U87 cells. In vivo imaging further verified that c(RGDfK)/Pep-22-LP exhibited higher brain tumor distribution than single ligand modified liposomes. The median survival time of glioma-bearing mice treated with c(RGDfK)/Pep-22-DOX-LP (39.5 days) was significantly prolonged than those treated with free doxorubicin or other controls. In conclusion, the c(RGDfK) and Peptide-22 dual-modified liposome was constructed based on the targeting ability screening of various ligands. The system could effectively overcome BBB/BBTB barriers, target to tumor cells and inhibit the growth of glioma, which proved its potential for improving the efficacy of chemotherapeutics for glioma therapy.
                Bookmark

                Author and article information

                Journal
                Theranostics
                Theranostics
                thno
                Theranostics
                Ivyspring International Publisher (Sydney )
                1838-7640
                2019
                9 June 2019
                : 9
                : 15
                : 4437-4449
                Affiliations
                [1 ]Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
                [2 ]Shanghai Ginposome Pharmatech Co., Ltd, Shanghai 201600, China
                [3 ]Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
                [4 ]Institute of Clinical Pharmacology, Guangzhou University of Traditional Chinese Medicine, Guangzhou 510006, China
                [5 ]Institute of Integrated Chinese and Western Medicine, Fudan University, Shanghai 200040, China
                Author notes
                ✉ Corresponding author: Jianxin Wang, Tel.: 86-21-51980088; Fax: 86-21-51980088; E-mail: jxwang@ 123456fudan.edu.cn

                #Chao Hong and Dan Wang contributed equally to this work

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                thnov09p4437
                10.7150/thno.34953
                6599661
                31285771
                5716041d-4b32-473c-a301-d7a0defc87a0
                © Ivyspring International Publisher

                This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license ( https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 17 March 2019
                : 20 May 2019
                Categories
                Research Paper

                Molecular medicine
                ginsenoside,liposome,multifunction,gastric cancer,combination therapy,paclitaxel.
                Molecular medicine
                ginsenoside, liposome, multifunction, gastric cancer, combination therapy, paclitaxel.

                Comments

                Comment on this article