4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Thermal cyclization of phenylallenes that contain ortho-1,3-dioxolan-2-yl groups: new cascade reactions initiated by 1,5-hydride shifts of acetalic H atoms.

      Chemistry (Weinheim an Der Bergstrasse, Germany)
      Wiley
      density functional calculations, substituent effects, naphthalenes, cyclization, allenes

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A series of 2-(1,3-dioxolan-2-yl)phenylallenes that contained a range of substituents (alkyl, aryl, phosphinyl, alkoxycarbonyl, sulfonyl) at the cumulenic C3 position were prepared by using a diverse range of synthetic strategies and converted into their respective 1-(2-hydroxy)-ethoxy-2-substituted naphthalenes by smooth thermal activation in toluene solution. Electron-withdrawing groups at the C3 position accelerated these tandem processes, which consisted of 1) an initial hydride-like [1,5]-H shift of the acetalic H atom onto the central cumulene carbon atom; 2) a subsequent 6π-electrocyclic ring-closure of the resulting reactive ortho-xylylenes; and 3) a final aromatization step with concomitant ring-opening of the 1,3-dioxolane fragment. If the 1,3-dioxolane ring of the starting allenes was replaced by a dimethoxymethyl group, the reactions led to mixtures of two disubstituted naphthalenes, which were formed by the migration of either the acetalic H atom or the methoxy group, with the latter migration occurring to a lesser extent. Two of the final 1,2-disubstituted naphthalenes were converted into their corresponding naphtho-fused dioxaphosphepine or dioxepinone through an intramolecular transesterification reaction. A DFT computational study accounted for the beneficial influence of the 1,3-dioxolane fragment on the carbon atom from which the H-shift took place and also of the electron-withdrawing substituents on the allene terminus. Remarkably, in the processes that contained a sulfonyl substituent, the conrotatory 6π-electrocyclization step was of lower activation energy than the alternative disrotatory mode.

          Related collections

          Author and article information

          Journal
          24123192
          10.1002/chem.201301608

          density functional calculations,substituent effects,naphthalenes,cyclization,allenes

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.