3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      L-Ribose production from L-arabinose by immobilized recombinant Escherichia coli co-expressing the L-arabinose isomerase and mannose-6-phosphate isomerase genes from Geobacillus thermodenitrificans.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          L-Ribose is an important precursor for antiviral agents, and thus its high-level production is urgently demanded. For this aim, immobilized recombinant Escherichia coli cells expressing the L-arabinose isomerase and variant mannose-6-phosphate isomerase genes from Geobacillus thermodenitrificans were developed. The immobilized cells produced 99 g/l L-ribose from 300 g/l L-arabinose in 3 h at pH 7.5 and 60 °C in the presence of 1 mM Co(2+), with a conversion yield of 33 % (w/w) and a productivity of 33 g/l/h. The immobilized cells in the packed-bed bioreactor at a dilution rate of 0.2 h(-1) produced an average of 100 g/l L-ribose with a conversion yield of 33 % and a productivity of 5.0 g/l/h for the first 12 days, and the operational half-life in the bioreactor was 28 days. Our study is first verification for L-ribose production by long-term operation and feasible for cost-effective commercialization. The immobilized cells in the present study also showed the highest conversion yield among processes from L-arabinose as the substrate.

          Related collections

          Author and article information

          Journal
          Appl Biochem Biotechnol
          Applied biochemistry and biotechnology
          Springer Science and Business Media LLC
          1559-0291
          0273-2289
          Jan 2014
          : 172
          : 1
          Article
          10.1007/s12010-013-0547-x
          24078190
          56e42f69-6f7a-4f46-8ae8-51051cba3cd0
          History

          Comments

          Comment on this article