3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Insights into the multifaceted role of circular RNAs: implications for Parkinson’s disease pathogenesis and diagnosis

      review-article
      NPJ Parkinson's Disease
      Nature Publishing Group UK
      Parkinson's disease, Parkinson's disease

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Parkinson’s disease (PD) is a complex, age-related, neurodegenerative disease whose etiology, pathology, and clinical manifestations remain incompletely understood. As a result, care focuses primarily on symptoms relief. Circular RNAs (circRNAs) are a large class of mostly noncoding RNAs that accumulate with aging in the brain and are increasingly shown to regulate all aspects of neuronal and glial development and function. They are generated by the spliceosome through the backsplicing of linear RNA. Although their biological role remains largely unknown, they have been shown to regulate transcription and splicing, act as decoys for microRNAs and RNA binding proteins, used as templates for translation, and serve as scaffolding platforms for signaling components. Considering that they are stable, diverse, and detectable in easily accessible biofluids, they are deemed promising biomarkers for diagnosing diseases. CircRNAs are differentially expressed in the brain of patients with PD, and growing evidence suggests that they regulate PD pathogenetic processes. Here, the biogenesis, expression, degradation, and detection of circRNAs, as well as their proposed functions, are reviewed. Thereafter, research linking circRNAs to PD-related processes, including aging, alpha-synuclein dysregulation, neuroinflammation, and oxidative stress is highlighted, followed by recent evidence for their use as prognostic and diagnostic biomarkers for PD.

          Related collections

          Most cited references106

          • Record: found
          • Abstract: found
          • Article: not found

          Circular RNAs are a large class of animal RNAs with regulatory potency.

          Circular RNAs (circRNAs) in animals are an enigmatic class of RNA with unknown function. To explore circRNAs systematically, we sequenced and computationally analysed human, mouse and nematode RNA. We detected thousands of well-expressed, stable circRNAs, often showing tissue/developmental-stage-specific expression. Sequence analysis indicated important regulatory functions for circRNAs. We found that a human circRNA, antisense to the cerebellar degeneration-related protein 1 transcript (CDR1as), is densely bound by microRNA (miRNA) effector complexes and harbours 63 conserved binding sites for the ancient miRNA miR-7. Further analyses indicated that CDR1as functions to bind miR-7 in neuronal tissues. Human CDR1as expression in zebrafish impaired midbrain development, similar to knocking down miR-7, suggesting that CDR1as is a miRNA antagonist with a miRNA-binding capacity ten times higher than any other known transcript. Together, our data provide evidence that circRNAs form a large class of post-transcriptional regulators. Numerous circRNAs form by head-to-tail splicing of exons, suggesting previously unrecognized regulatory potential of coding sequences.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Natural RNA circles function as efficient microRNA sponges.

            MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that act by direct base pairing to target sites within untranslated regions of messenger RNAs. Recently, miRNA activity has been shown to be affected by the presence of miRNA sponge transcripts, the so-called competing endogenous RNA in humans and target mimicry in plants. We previously identified a highly expressed circular RNA (circRNA) in human and mouse brain. Here we show that this circRNA acts as a miR-7 sponge; we term this circular transcript ciRS-7 (circular RNA sponge for miR-7). ciRS-7 contains more than 70 selectively conserved miRNA target sites, and it is highly and widely associated with Argonaute (AGO) proteins in a miR-7-dependent manner. Although the circRNA is completely resistant to miRNA-mediated target destabilization, it strongly suppresses miR-7 activity, resulting in increased levels of miR-7 targets. In the mouse brain, we observe overlapping co-expression of ciRS-7 and miR-7, particularly in neocortical and hippocampal neurons, suggesting a high degree of endogenous interaction. We further show that the testis-specific circRNA, sex-determining region Y (Sry), serves as a miR-138 sponge, suggesting that miRNA sponge effects achieved by circRNA formation are a general phenomenon. This study serves as the first, to our knowledge, functional analysis of a naturally expressed circRNA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MDS clinical diagnostic criteria for Parkinson's disease.

              This document presents the Movement Disorder Society Clinical Diagnostic Criteria for Parkinson's disease (PD). The Movement Disorder Society PD Criteria are intended for use in clinical research but also may be used to guide clinical diagnosis. The benchmark for these criteria is expert clinical diagnosis; the criteria aim to systematize the diagnostic process, to make it reproducible across centers and applicable by clinicians with less expertise in PD diagnosis. Although motor abnormalities remain central, increasing recognition has been given to nonmotor manifestations; these are incorporated into both the current criteria and particularly into separate criteria for prodromal PD. Similar to previous criteria, the Movement Disorder Society PD Criteria retain motor parkinsonism as the core feature of the disease, defined as bradykinesia plus rest tremor or rigidity. Explicit instructions for defining these cardinal features are included. After documentation of parkinsonism, determination of PD as the cause of parkinsonism relies on three categories of diagnostic features: absolute exclusion criteria (which rule out PD), red flags (which must be counterbalanced by additional supportive criteria to allow diagnosis of PD), and supportive criteria (positive features that increase confidence of the PD diagnosis). Two levels of certainty are delineated: clinically established PD (maximizing specificity at the expense of reduced sensitivity) and probable PD (which balances sensitivity and specificity). The Movement Disorder Society criteria retain elements proven valuable in previous criteria and omit aspects that are no longer justified, thereby encapsulating diagnosis according to current knowledge. As understanding of PD expands, the Movement Disorder Society criteria will need continuous revision to accommodate these advances.
                Bookmark

                Author and article information

                Contributors
                edoxakis@bioacademy.gr
                Journal
                NPJ Parkinsons Dis
                NPJ Parkinsons Dis
                NPJ Parkinson's Disease
                Nature Publishing Group UK (London )
                2373-8057
                10 January 2022
                10 January 2022
                2022
                : 8
                : 7
                Affiliations
                GRID grid.417593.d, ISNI 0000 0001 2358 8802, Center of Basic Research, Biomedical Research Foundation, , Academy of Athens, ; 11527 Athens, Greece
                Author information
                http://orcid.org/0000-0003-1305-0739
                Article
                265
                10.1038/s41531-021-00265-9
                8748951
                35013342
                56a8f860-cb3c-404a-ac43-87252791cdb4
                © The Author(s) 2022

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 10 June 2021
                : 10 December 2021
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100003448, General Secretariat for Research and Technology (GSRT);
                Award ID: Τ2ΕΔΚ-01291
                Award Recipient :
                Categories
                Review Article
                Custom metadata
                © The Author(s) 2022

                parkinson's disease
                parkinson's disease

                Comments

                Comment on this article