19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inborn errors in the metabolism of glutathione

      review-article
      1 , , 1
      Orphanet Journal of Rare Diseases
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glutathione is a tripeptide composed of glutamate, cysteine and glycine. Glutathione is present in millimolar concentrations in most mammalian cells and it is involved in several fundamental biological functions, including free radical scavenging, detoxification of xenobiotics and carcinogens, redox reactions, biosynthesis of DNA, proteins and leukotrienes, as well as neurotransmission/neuromodulation. Glutathione is metabolised via the gamma-glutamyl cycle, which is catalyzed by six enzymes. In man, hereditary deficiencies have been found in five of the six enzymes. Glutathione synthetase deficiency is the most frequently recognized disorder and, in its severe form, it is associated with hemolytic anemia, metabolic acidosis, 5-oxoprolinuria, central nervous system (CNS) damage and recurrent bacterial infections. Gamma-glutamylcysteine synthetase deficiency is also associated with hemolytic anemia, and some patients with this disorder show defects of neuromuscular function and generalized aminoaciduria. Gamma-glutamyl transpeptidase deficiency has been found in patients with CNS involvement and glutathionuria. 5-Oxoprolinase deficiency is associated with 5-oxoprolinuria but without a clear association with other symptoms. Dipeptidase deficiency has been described in one patient. All disorders are very rare and inherited in an autosomal recessive manner. Most of the mutations are leaky so that many patients have residual enzyme activity. Diagnosis is made by measuring the concentration of different metabolites in the gamma-glutamyl cycle, enzyme activity and in glutathione synthetase and gamma-glutamylcysteine synthetase deficiency, also by mutation analysis. Prenatal diagnosis has been preformed in glutathione synthetase deficiency. The prognosis is difficult to predict, as few patients are known, but seems to vary significantly between different patients. The aims of the treatment of glutathione synthesis defects are to avoid hemolytic crises and to increase the defense against reactive oxygen species. No treatment has been recommended for gamma-glutamyl transpeptidase, 5-oxoprolinase and dipeptidase deficiency.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: not found
          • Article: not found

          Determination of glutathione and glutathione disulfide in biological samples.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Knockout of the mouse glutamate cysteine ligase catalytic subunit (Gclc) gene: embryonic lethal when homozygous, and proposed model for moderate glutathione deficiency when heterozygous.

            The biosynthesis of reduced glutathione (GSH) is carried out by the enzymes gamma-glutamylcysteine synthetase (GCL) and GSH synthetase. GCL is the rate-limiting step and represents a heterodimeric enzyme comprised of a catalytic subunit (GCLC) and a ("regulatory"), or modifier, subunit (GCLM). The nonhomologous Gclc and Gclm genes are located on mouse chromosomes 9 and 3, respectively. GCLC owns the catalytic activity, whereas GCLM enhances the enzyme activity by lowering the K(m) for glutamate and increasing the K(i) to GSH inhibition. Humans have been identified with one or two defective GCLC alleles and show low GSH levels. As an initial first step toward understanding the role of GSH in cellular redox homeostasis, we have targeted a disruption of the mouse Gclc gene. The Gclc(-/-) homozygous knockout animal dies before gestational day 13, whereas the Gclc(+/-) heterozygote is viable and fertile. The Gclc(+/-) mouse exhibits a gene-dose decrease in the GCLC protein and GCL activity, but only about a 20% diminution in GSH levels and a compensatory increase of approximately 30% in ascorbate-as compared with that in Gclc(+/+) wild-type littermates. These data show a reciprocal action between falling GSH concentrations and rising ascorbate levels. Therefore, the Gclc(+/-) mouse may be a useful genetic model for mild endogenous oxidative stress. Copyright 2000 Academic Press.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Initial characterization of the glutamate-cysteine ligase modifier subunit Gclm(-/-) knockout mouse. Novel model system for a severely compromised oxidative stress response.

              Glutamate-cysteine ligase (GCL) is the rate-limiting enzyme in the GSH biosynthesis pathway. In higher eukaryotes, this enzyme is a heterodimer comprising a catalytic subunit (GCLC) and a modifier subunit (GCLM), which change the catalytic characteristics of the holoenzyme. To define the cellular function of GCLM, we disrupted the mouse Gclm gene to create a null allele. Gclm(-/-) mice are viable and fertile and have no overt phenotype. In liver, lung, pancreas, erythrocytes, and plasma, however, GSH levels in Gclm(-/-) mice were 9-16% of that in Gclm(+/+) littermates. Cysteine levels in Gclm(-/-) mice were 9, 35, and 40% of that in Gclm(+/+) mice in kidney, pancreas, and plasma, respectively, but remained unchanged in the liver and erythrocytes. Comparing the hepatic GCL holoenzyme with GCLC in the genetic absence of GCLM, we found the latter had an approximately 2-fold increase in K(m) for glutamate and a dramatically enhanced sensitivity to GSH inhibition. The major decrease in GSH, combined with diminished GCL activity, rendered Gclm(-/-) fetal fibroblasts strikingly more sensitive to chemical oxidants such as H(2)O(2). We conclude that the Gclm(-/-) mouse represents a model of chronic GSH depletion that will be very useful in evaluating the role of the GCLM subunit and GSH in numerous pathophysiological conditions as well as in environmental toxicity associated with oxidant insult.
                Bookmark

                Author and article information

                Journal
                Orphanet J Rare Dis
                Orphanet Journal of Rare Diseases
                BioMed Central (London )
                1750-1172
                2007
                30 March 2007
                : 2
                : 16
                Affiliations
                [1 ]Karolinska Institute, Department of Pediatrics, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
                Article
                1750-1172-2-16
                10.1186/1750-1172-2-16
                1852094
                17397529
                569e487e-4160-4727-bda1-1aec17ef6989
                Copyright © 2007 Ristoff and Larsson; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 January 2007
                : 30 March 2007
                Categories
                Review

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article