1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Pathophysiology of neurodegenerative diseases: An interplay among axonal transport failure, oxidative stress, and inflammation?

      ,
      Seminars in Immunology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references243

          • Record: found
          • Abstract: found
          • Article: not found

          The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases

          Microglia play a pivotal role in maintenance of brain homeostasis, but lose homeostatic function during neurodegenerative disorders. We identified a specific apolipoprotein E (APOE)-dependent molecular signature in microglia from models of amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS) and Alzheimer’s disease (AD) and in microglia surrounding neuritic β-amyloid (Aβ) -plaques in human AD brains. The APOE pathway mediated a switch from a homeostatic to neurodegenerative microglia phenotype following phagocytosis of apoptotic neurons. Triggering receptor expressed on myeloid cells 2 (TREM2) induced APOE signaling, and targeting the TREM2-APOE pathway restored the homeostatic signature of microglia in ALS and AD mouse models and prevented neuronal loss in an acute model of neurodegeneration. APOE-mediated neurodegenerative microglia led to a loss in their tolerogenic function. Taken together, our work identifies the TREM2-APOE pathway as a major regulator of microglial functional phenotype in neurodegenerative diseases and serves as a novel target to restore homeostatic microglia. Microglia change their phenotype and function during aging and neurodegeneration, but the underlying molecular mechanisms for this change remain unknown. Krasemann, Madore, et al. identify the TREM2-APOE pathway as a major regulator of microglia phenotypic change in neurodegenerative diseases, which may serve as a target to restore homeostatic microglia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microglia Function in the Central Nervous System During Health and Neurodegeneration.

            Microglia are resident cells of the brain that regulate brain development, maintenance of neuronal networks, and injury repair. Microglia serve as brain macrophages but are distinct from other tissue macrophages owing to their unique homeostatic phenotype and tight regulation by the central nervous system (CNS) microenvironment. They are responsible for the elimination of microbes, dead cells, redundant synapses, protein aggregates, and other particulate and soluble antigens that may endanger the CNS. Furthermore, as the primary source of proinflammatory cytokines, microglia are pivotal mediators of neuroinflammation and can induce or modulate a broad spectrum of cellular responses. Alterations in microglia functionality are implicated in brain development and aging, as well as in neurodegeneration. Recent observations about microglia ontogeny combined with extensive gene expression profiling and novel tools to study microglia biology have allowed us to characterize the spectrum of microglial phenotypes during development, homeostasis, and disease. In this article, we review recent advances in our understanding of the biology of microglia, their contribution to homeostasis, and their involvement in neurodegeneration. Moreover, we highlight the complexity of targeting microglia for therapeutic intervention in neurodegenerative diseases. Expected final online publication date for the Annual Review of Immunology Volume 35 is April 26, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microglia and macrophages in brain homeostasis and disease

              Microglia and non-parenchymal macrophages in the brain are mononuclear phagocytes that are increasingly recognized to be essential players in the development, homeostasis and diseases of the central nervous system. With the availability of new genetic, molecular and pharmacological tools, considerable advances have been made towards our understanding of the embryonic origins, developmental programmes and functions of these cells. These exciting discoveries, some of which are still controversial, also raise many new questions, which makes brain macrophage biology a fast-growing field at the intersection of neuroscience and immunology. Here, we review the current knowledge of how and where brain macrophages are generated, with a focus on parenchymal microglia. We also discuss their normal functions during development and homeostasis, the disturbance of which may lead to various neurodegenerative and neuropsychiatric diseases.
                Bookmark

                Author and article information

                Journal
                Seminars in Immunology
                Seminars in Immunology
                Elsevier BV
                10445323
                June 2022
                June 2022
                : 101628
                Article
                10.1016/j.smim.2022.101628
                35779975
                5697898a-e1e2-406c-9d37-60141a553d63
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article