1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Deep Learning Based Detection Tool for Impacted Mandibular Third Molar Teeth

      Diagnostics
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Third molar impacted teeth are a common issue with all ages, possibly causing tooth decay, root resorption, and pain. This study was aimed at developing a computer-assisted detection system based on deep convolutional neural networks for the detection of third molar impacted teeth using different architectures and to evaluate the potential usefulness and accuracy of the proposed solutions on panoramic radiographs. A total of 440 panoramic radiographs from 300 patients were randomly divided. As a two-stage technique, Faster RCNN with ResNet50, AlexNet, and VGG16 as a backbone and one-stage technique YOLOv3 were used. The Faster-RCNN, as a detector, yielded a mAP@0.5 rate of 0.91 with ResNet50 backbone while VGG16 and AlexNet showed slightly lower performances: 0.87 and 0.86, respectively. The other detector, YOLO v3, provided the highest detection efficacy with a mAP@0.5 of 0.96. Recall and precision were 0.93 and 0.88, respectively, which supported its high performance. Considering the findings from different architectures, it was seen that the proposed one-stage detector YOLOv3 had excellent performance for impacted mandibular third molar tooth detection on panoramic radiographs. Promising results showed that diagnostic tools based on state-ofthe-art deep learning models were reliable and robust for clinical decision-making.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

          State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features-using the recently popular terminology of neural networks with 'attention' mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3], our detection system has a frame rate of 5fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Very Deep Convolutional Networks for Large-Scale Image Recognition

            In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.
              Bookmark
              • Record: found
              • Abstract: not found
              • Book Chapter: not found

              SSD: Single Shot MultiBox Detector

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                DIAGC9
                Diagnostics
                Diagnostics
                MDPI AG
                2075-4418
                April 2022
                April 09 2022
                : 12
                : 4
                : 942
                Article
                10.3390/diagnostics12040942
                35453990
                5691c468-fec0-4aaf-91ba-c6114d7a3028
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article