18
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent advancements in metal–organic frameworks integrating quantum dots (QDs@MOF) and their potential applications

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Design and development of new materials and their hybrids are key to addressing current energy issues. Thanks to their tunable textural and physiochemical properties, metal–organic frameworks (MOFs) show great potential toward gas sorption, catalysis, sensing, and electrochemical energy applications. Nevertheless, practical applications of MOFs have been hampered because of their limited electrical conductivity, micropore size, and poor stability. However, smart integration of zero-dimensional quantum dots (QDs) into an MOF template, where the host structure offers suitable interactions for enhancing the stability and synergic properties, may be a solution. The objective of this review is to summarize recent advances in the field of QD@MOFs, highlighting fresh approaches to synthesis strategies and progress made in their application to optoelectronic devices, sensing, biomedical, catalysis, and energy storage. The current challenges and future directions of QDs@MOFs hybrids toward advancing energy and environmental applications are also addressed. We anticipate that this review will inspire researchers to develop novel MOF hybrids for energy, optoelectronics, and biomedical applications.

          Most cited references222

          • Record: found
          • Abstract: found
          • Article: not found

          Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics.

          We show nanoscale phase stabilization of CsPbI3 quantum dots (QDs) to low temperatures that can be used as the active component of efficient optoelectronic devices. CsPbI3 is an all-inorganic analog to the hybrid organic cation halide perovskites, but the cubic phase of bulk CsPbI3 (α-CsPbI3)-the variant with desirable band gap-is only stable at high temperatures. We describe the formation of α-CsPbI3 QD films that are phase-stable for months in ambient air. The films exhibit long-range electronic transport and were used to fabricate colloidal perovskite QD photovoltaic cells with an open-circuit voltage of 1.23 volts and efficiency of 10.77%. These devices also function as light-emitting diodes with low turn-on voltage and tunable emission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metal-organic framework materials as catalysts.

            A critical review of the emerging field of MOF-based catalysis is presented. Discussed are examples of: (a) opportunistic catalysis with metal nodes, (b) designed catalysis with framework nodes, (c) catalysis by homogeneous catalysts incorporated as framework struts, (d) catalysis by MOF-encapsulated molecular species, (e) catalysis by metal-free organic struts or cavity modifiers, and (f) catalysis by MOF-encapsulated clusters (66 references).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reticular synthesis and the design of new materials.

              The long-standing challenge of designing and constructing new crystalline solid-state materials from molecular building blocks is just beginning to be addressed with success. A conceptual approach that requires the use of secondary building units to direct the assembly of ordered frameworks epitomizes this process: we call this approach reticular synthesis. This chemistry has yielded materials designed to have predetermined structures, compositions and properties. In particular, highly porous frameworks held together by strong metal-oxygen-carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.
                Bookmark

                Author and article information

                Journal
                Nanotechnology Reviews
                Walter de Gruyter GmbH
                2191-9097
                December 07 2021
                December 07 2021
                January 01 2022
                May 21 2022
                May 21 2022
                January 01 2022
                : 11
                : 1
                : 1947-1976
                Affiliations
                [1 ]Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Bhubaneswar Campus , Bhubaneswar , India
                [2 ]Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc , Šlechtitelů 27 , 783 71 Olomouc , Czech Republic
                [3 ]IT4Innovations, VSB – Technical University of Ostrava , 17. Listopadu 2172/15 , 708 00 Ostrava-Poruba , Czech Republic
                [4 ]Department of Chemistry, Indian Institute of Technology Jammu , Jammu & Kashmir , 181221 , India
                Article
                10.1515/ntrev-2022-0118
                566fbc9e-15cb-47ba-a608-a6780d9c7723
                © 2022

                http://creativecommons.org/licenses/by/4.0

                History

                Nanomaterials,Nanotechnology,Nanophysics,Industrial chemistry,Materials science
                Nanomaterials, Nanotechnology, Nanophysics, Industrial chemistry, Materials science

                Comments

                Comment on this article

                scite_
                39
                0
                33
                0
                Smart Citations
                39
                0
                33
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content352

                Cited by4

                Most referenced authors2,918