2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhanced Convolutional Neural Network Model for Cassava Leaf Disease Identification and Classification

      , , , , , , ,
      Mathematics
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cassava is a crucial food and nutrition security crop cultivated by small-scale farmers and it can survive in a brutal environment. It is a significant source of carbohydrates in African countries. Sometimes, Cassava crops can be infected by leaf diseases, affecting the overall production and reducing farmers’ income. The existing Cassava disease research encounters several challenges, such as poor detection rate, higher processing time, and poor accuracy. This research provides a comprehensive learning strategy for real-time Cassava leaf disease identification based on enhanced CNN models (ECNN). The existing Standard CNN model utilizes extensive data processing features, increasing the computational overhead. A depth-wise separable convolution layer is utilized to resolve CNN issues in the proposed ECNN model. This feature minimizes the feature count and computational overhead. The proposed ECNN model utilizes a distinct block processing feature to process the imbalanced images. To resolve the color segregation issue, the proposed ECNN model uses a Gamma correction feature. To decrease the variable selection process and increase the computational efficiency, the proposed ECNN model uses global average election polling with batch normalization. An experimental analysis is performed over an online Cassava image dataset containing 6256 images of Cassava leaves with five disease classes. The dataset classes are as follows: class 0: “Cassava Bacterial Blight (CBB)”; class 1: “Cassava Brown Streak Disease (CBSD)”; class 2: “Cassava Green Mottle (CGM)”; class 3: “Cassava Mosaic Disease (CMD)”; and class 4: “Healthy”. Various performance measuring parameters, i.e., precision, recall, measure, and accuracy, are calculated for existing Standard CNN and the proposed ECNN model. The proposed ECNN classifier significantly outperforms and achieves 99.3% accuracy for the balanced dataset. The test findings prove that applying a balanced database of images improves classification performance.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Deep Learning for Image-Based Cassava Disease Detection

          Cassava is the third largest source of carbohydrates for human food in the world but is vulnerable to virus diseases, which threaten to destabilize food security in sub-Saharan Africa. Novel methods of cassava disease detection are needed to support improved control which will prevent this crisis. Image recognition offers both a cost effective and scalable technology for disease detection. New deep learning models offer an avenue for this technology to be easily deployed on mobile devices. Using a dataset of cassava disease images taken in the field in Tanzania, we applied transfer learning to train a deep convolutional neural network to identify three diseases and two types of pest damage (or lack thereof). The best trained model accuracies were 98% for brown leaf spot (BLS), 96% for red mite damage (RMD), 95% for green mite damage (GMD), 98% for cassava brown streak disease (CBSD), and 96% for cassava mosaic disease (CMD). The best model achieved an overall accuracy of 93% for data not used in the training process. Our results show that the transfer learning approach for image recognition of field images offers a fast, affordable, and easily deployable strategy for digital plant disease detection.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Identification of plant leaf diseases using a nine-layer deep convolutional neural network

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Identification of Maize Leaf Diseases Using Improved Deep Convolutional Neural Networks

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Mathematics
                Mathematics
                MDPI AG
                2227-7390
                February 2022
                February 13 2022
                : 10
                : 4
                : 580
                Article
                10.3390/math10040580
                566f34ca-2ccf-47c2-94a1-cf2a62e44bfb
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article