2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      WIMPy Leptogenesis in Non-Standard Cosmologies

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We study the possibility of generating baryon asymmetry of the universe from dark matter (DM) annihilations during non-standard cosmological epochs. Considering the DM to be of weakly interacting massive particle (WIMP) type, the generation of baryon asymmetry via leptogenesis route is studied where WIMP DM annihilation produces a non-zero lepton asymmetry. Adopting a minimal particle physics model to realise this along with non-zero light neutrino masses, we consider three different types of non-standard cosmic history namely, (i) fast expanding universe, (ii) early matter domination and (iii) scalar-tensor theory of gravity. By solving the appropriate Boltzmann equations incorporating such non-standard history, we find that the allowed parameter space consistent with DM relic and observed baryon asymmetry gets enlarged with the possibility of lower DM mass in some scenarios. While such lighter DM can face further scrutiny at direct search experiments, the non-standard epochs offer complementary probes on their own.

          Related collections

          Author and article information

          Journal
          24 August 2022
          Article
          2208.11295
          566db7a0-f128-498d-b31d-1e4ce1107c21

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          46 pages, 20 captioned figures
          hep-ph astro-ph.CO

          Cosmology & Extragalactic astrophysics,High energy & Particle physics
          Cosmology & Extragalactic astrophysics, High energy & Particle physics

          Comments

          Comment on this article