33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantitative and Qualitative Analysis of the Anti-Proliferative Potential of the Pyrazole Scaffold in the Design of Anticancer Agents

      Molecules
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The current work presents an objective overview of the impact of one important heterocyclic structure, the pyrazole ring, in the development of anti-proliferative drugs. A set of 1551 pyrazole derivatives were extracted from the National Cancer Institute (NCI) database, together with their growth inhibition effects (GI%) on the NCI’s panel of 60 cancer cell lines. The structures of these derivatives were analyzed based on the compounds’ averages of GI% values across NCI-60 cell lines and the averages of the values for the outlier cells. The distribution and the architecture of the Bemis–Murcko skeletons were analyzed, highlighting the impact of certain scaffold structures on the anti-proliferative effect’s potency and selectivity. The drug-likeness, chemical reactivity and promiscuity risks of the compounds were predicted using AMDETlab. The pyrazole ring proved to be a versatile scaffold for the design of anticancer drugs if properly substituted and if connected with other cyclic structures. The 1,3-diphenyl-pyrazole emerged as a useful scaffold for potent and targeted anticancer candidates.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          The NCI60 human tumour cell line anticancer drug screen.

          The US National Cancer Institute (NCI) 60 human tumour cell line anticancer drug screen (NCI60) was developed in the late 1980s as an in vitro drug-discovery tool intended to supplant the use of transplantable animal tumours in anticancer drug screening. This screening model was rapidly recognized as a rich source of information about the mechanisms of growth inhibition and tumour-cell kill. Recently, its role has changed to that of a service screen supporting the cancer research community. Here I review the development, use and productivity of the screen, highlighting several outcomes that have contributed to advances in cancer chemotherapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Escape from flatland: increasing saturation as an approach to improving clinical success.

            The medicinal chemistry community has become increasingly aware of the value of tracking calculated physical properties such as molecular weight, topological polar surface area, rotatable bonds, and hydrogen bond donors and acceptors. We hypothesized that the shift to high-throughput synthetic practices over the past decade may be another factor that may predispose molecules to fail by steering discovery efforts toward achiral, aromatic compounds. We have proposed two simple and interpretable measures of the complexity of molecules prepared as potential drug candidates. The first is carbon bond saturation as defined by fraction sp(3) (Fsp(3)) where Fsp(3) = (number of sp(3) hybridized carbons/total carbon count). The second is simply whether a chiral carbon exists in the molecule. We demonstrate that both complexity (as measured by Fsp(3)) and the presence of chiral centers correlate with success as compounds transition from discovery, through clinical testing, to drugs. In an attempt to explain these observations, we further demonstrate that saturation correlates with solubility, an experimental physical property important to success in the drug discovery setting.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The properties of known drugs. 1. Molecular frameworks.

              In order to better understand the common features present in drug molecules, we use shape description methods to analyze a database of commercially available drugs and prepare a list of common drug shapes. A useful way of organizing this structural data is to group the atoms of each drug molecule into ring, linker, framework, and side chain atoms. On the basis of the two-dimensional molecular structures (without regard to atom type, hybridization, and bond order), there are 1179 different frameworks among the 5120 compounds analyzed. However, the shapes of half of the drugs in the database are described by the 32 most frequently occurring frameworks. This suggests that the diversity of shapes in the set of known drugs is extremely low. In our second method of analysis, in which atom type, hybridization, and bond order are considered, more diversity is seen; there are 2506 different frameworks among the 5120 compounds in the database, and the most frequently occurring 42 frameworks account for only one-fourth of the drugs. We discuss the possible interpretations of these findings and the way they may be used to guide future drug discovery research.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                MOLEFW
                Molecules
                Molecules
                MDPI AG
                1420-3049
                May 2022
                May 20 2022
                : 27
                : 10
                : 3300
                Article
                10.3390/molecules27103300
                9146646
                35630776
                5624e7e7-d127-49fd-bf7e-9a3c96a61421
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content650

                Cited by4

                Most referenced authors1,051