61
views
1
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Angiogenesis: An Adaptive Dynamic Biological Patterning Problem

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Formation of functionally adequate vascular networks by angiogenesis presents a problem in biological patterning. Generated without predetermined spatial patterns, networks must develop hierarchical tree-like structures for efficient convective transport over large distances, combined with dense space-filling meshes for short diffusion distances to every point in the tissue. Moreover, networks must be capable of restructuring in response to changing functional demands without interruption of blood flow. Here, theoretical simulations based on experimental data are used to demonstrate that this patterning problem can be solved through over-abundant stochastic generation of vessels in response to a growth factor generated in hypoxic tissue regions, in parallel with refinement by structural adaptation and pruning. Essential biological mechanisms for generation of adequate and efficient vascular patterns are identified and impairments in vascular properties resulting from defects in these mechanisms are predicted. The results provide a framework for understanding vascular network formation in normal or pathological conditions and for predicting effects of therapies targeting angiogenesis.

          Author Summary

          The blood vessels provide an efficient system for transport of substances to all parts of the body. They are capable of growing or regressing during development, in response to changing functional needs, and in disease states. This is achieved by structural adaptation, i.e. changes in the diameters and other characteristics of existing vessels, and by angiogenesis, i.e. growth of new blood vessels. Here, we address the question: How do the processes of structural adaptation and angiogenesis lead to the formation of organized vessel networks that can supply the changing needs of the tissue? We carried out theoretical simulations of network growth and adaptation, including vessel blood flows, oxygen transport to tissue, and the generation of a growth factor in low-oxygen regions, which stimulates angiogenesis by sprouting from existing vessels. We showed that the processes of over-abundant random angiogenesis together with structural adaptation including pruning of redundant vessels can generate adequate and efficient vessel networks that are capable of continuously adapting to changing tissue needs. Our work provides insight into the biological mechanisms that are essential for formation and maintenance of functional vessel networks, and may lead to new strategies for controlling blood vessel formation in diseases.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Blood flow in microvascular networks. Experiments and simulation.

          A theoretical model has been developed to simulate blood flow through large microcirculatory networks. The model takes into account the dependence of apparent viscosity of blood on vessel diameter and hematocrit (the Fahraeus-Lindqvist effect), the reduction of intravascular hematocrit relative to the inflow hematocrit of a vessel (the Fahraeus effect), and the disproportionate distribution of red blood cells and plasma at arteriolar bifurcations (phase separation). The model was used to simulate flow in three microvascular networks in the rat mesentery with 436,583, and 913 vessel segments, respectively, using experimental data (length, diameter, and topological organization) obtained from the same networks. Measurements of hematocrit and flow direction in all vessel segments of these networks tested the validity of model results. These tests demonstrate that the prediction of parameters for individual vessel segments in large networks exhibits a high degree of uncertainty; for example, the squared coefficient of correlation between predicted and measured hematocrit of single vessel segments ranges only between 0.15 and 0.33. In contrast, the simulation of integrated characteristics of the network hemodynamics, such as the mean segment hematocrit or the distribution of blood flow velocities, is very precise. In addition, the following conclusions were derived from the comparison of predicted and measured values: 1) The low capillary hematocrits found in mesenteric microcirculatory networks as well as their heterogeneity can be explained on the basis of the Fahraeus effect and phase-separation phenomena. 2) The apparent viscosity of blood in vessels of the investigated tissue with diameters less than 15 microns is substantially higher than expected compared with measurements in glass tubes with the same diameter.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Angiogenic network formation in the developing vertebrate trunk.

            We have used time-lapse multiphoton microscopy of living Tg(fli1:EGFP)y1 zebrafish embryos to examine how a patterned, functional network of angiogenic blood vessels is generated in the early vertebrate trunk. Angiogenic vascular sprouts emerge from the longitudinal trunk axial vessels (the dorsal aorta and posterior cardinal vein) in two spatially and temporally distinct steps. Dorsal aorta-derived sprouts form an initial primary network of vascular segments, followed by emergence of vein-derived secondary vascular sprouts that interact and interconnect dynamically with the primary network to initiate vascular flow. Using transgenic silent heart mutant embryos, we show that the gross anatomical patterning of this network of vessels does not require blood circulation. However, our results suggest that circulatory flow dynamics play an important role in helping to determine the pattern of interconnections between the primary network and secondary sprouts, and thus the final arterial or venous identity of the vessels in the functional network. We discuss a model to explain our results combining genetic programming of overall vascular architecture with hemodynamic determination of circulatory flow patterns.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The shunt problem: control of functional shunting in normal and tumour vasculature.

              Networks of blood vessels in normal and tumour tissues have heterogeneous structures, with widely varying blood flow pathway lengths. To achieve efficient blood flow distribution, mechanisms for the structural adaptation of vessel diameters must be able to inhibit the formation of functional shunts (whereby short pathways become enlarged and flow bypasses long pathways). Such adaptation requires information about tissue metabolic status to be communicated upstream to feeding vessels, through conducted responses. We propose that impaired vascular communication in tumour microvascular networks, leading to functional shunting, is a primary cause of dysfunctional microcirculation and local hypoxia in cancer. We suggest that anti-angiogenic treatment of tumours may restore vascular communication and thereby improve or normalize flow distribution in tumour vasculature.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                March 2013
                March 2013
                21 March 2013
                : 9
                : 3
                : e1002983
                Affiliations
                [1 ]Department of Physiology and Arizona Research Laboratories, University of Arizona, Tucson, Arizona, United States of America
                [2 ]Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
                [3 ]Charité - Universitätsmedizin Berlin, Department of Physiology and CCR, Berlin, Germany
                University of Kansas Medical Center, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: TWS MWD ARP. Performed the experiments: TWS JPA RH. Analyzed the data: TWS JPA RH. Wrote the paper: TWS MWD ARP.

                Article
                PCOMPBIOL-D-12-01315
                10.1371/journal.pcbi.1002983
                3605064
                23555218
                560ae010-6470-4ddd-b246-64f706366f3d
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 17 August 2012
                : 28 January 2013
                Page count
                Pages: 12
                Funding
                This work was supported by National Institutes of Health grants HL034555, HL007249 and CA040355 ( http://www.nih.gov/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Computational Biology
                Biophysic Al Simulations
                Medicine
                Cardiovascular
                Hemodynamics
                Vascular Biology

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article