7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibition of ferroptosis protects House Ear Institute‐Organ of Corti 1 cells and cochlear hair cells from cisplatin‐induced ototoxicity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ferroptosis is a recently recognized form of non‐apoptotic cell death caused by an iron‐dependent accumulation of lipid hydroperoxides, which plays important roles in a wide spectrum of pathological conditions. The present study was aimed to investigate the impact of ferroptosis on cisplatin‐induced sensory hair cell damage. Cell viability was determined by Cell Counting Kit‐8 and lactase dehydrogenase assays. The reactive oxygen species (ROS) levels were evaluated by 2,7‐Dichlorodi‐hydrofluorescein diacetate (DCFH‐DA) and MitoSox‐Red staining. Mitochondrial membrane potential (MMP) was measured by tetramethylrhodamine methyl ester (TMRM) staining. Lipid peroxidation, intracellular and mitochondrial iron were detected by Liperfluo, C11‐BODIPY 581/591, FerroOrange and Mito‐FerroGreen, respectively. We found that cisplatin treatment not only markedly augmented ROS accumulation, decreased the MMP, but increased lipid peroxidation and iron accumulation in House Ear Institute‐Organ of Corti 1 (HEI‐OC1) cells. Of note, treatment with the specific ferroptosis inhibitor ferrostatin‐1 could effectively abrogate the cisplatin‐induced toxicity and subsequent cell death. Specifically, the improvement of mitochondrial functions is important mechanisms for protective action of ferroptosis inhibitor against cisplatin‐induced damages in HEI‐OC1 cells. Moreover, inhibition of ferroptosis significantly protected murine cochlear hair cells against cisplatin damage. In addition, treatment murine cochlear hair cells with ferroptosis inducer, RSL3, significantly exacerbated cisplatin‐induced damage, which could be alleviated by ROS inhibitor N‐acetyl‐L‐cysteine. Collectively, our study indicated that ferroptosis inhibition could alleviate the cisplatin‐induced ototoxicity via inactivation of lipid peroxide radical and improvement of mitochondrial function in hair cells.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Ferroptosis: an iron-dependent form of nonapoptotic cell death.

          Nonapoptotic forms of cell death may facilitate the selective elimination of some tumor cells or be activated in specific pathological states. The oncogenic RAS-selective lethal small molecule erastin triggers a unique iron-dependent form of nonapoptotic cell death that we term ferroptosis. Ferroptosis is dependent upon intracellular iron, but not other metals, and is morphologically, biochemically, and genetically distinct from apoptosis, necrosis, and autophagy. We identify the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes. Indeed, erastin, like glutamate, inhibits cystine uptake by the cystine/glutamate antiporter (system x(c)(-)), creating a void in the antioxidant defenses of the cell and ultimately leading to iron-dependent, oxidative death. Thus, activation of ferroptosis results in the nonapoptotic destruction of certain cancer cells, whereas inhibition of this process may protect organisms from neurodegeneration. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of ferroptotic cancer cell death by GPX4.

            Ferroptosis is a form of nonapoptotic cell death for which key regulators remain unknown. We sought a common mediator for the lethality of 12 ferroptosis-inducing small molecules. We used targeted metabolomic profiling to discover that depletion of glutathione causes inactivation of glutathione peroxidases (GPXs) in response to one class of compounds and a chemoproteomics strategy to discover that GPX4 is directly inhibited by a second class of compounds. GPX4 overexpression and knockdown modulated the lethality of 12 ferroptosis inducers, but not of 11 compounds with other lethal mechanisms. In addition, two representative ferroptosis inducers prevented tumor growth in xenograft mouse tumor models. Sensitivity profiling in 177 cancer cell lines revealed that diffuse large B cell lymphomas and renal cell carcinomas are particularly susceptible to GPX4-regulated ferroptosis. Thus, GPX4 is an essential regulator of ferroptotic cancer cell death. Copyright © 2014 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice.

              Ferroptosis is a non-apoptotic form of cell death induced by small molecules in specific tumour types, and in engineered cells overexpressing oncogenic RAS. Yet, its relevance in non-transformed cells and tissues is unexplored and remains enigmatic. Here, we provide direct genetic evidence that the knockout of glutathione peroxidase 4 (Gpx4) causes cell death in a pathologically relevant form of ferroptosis. Using inducible Gpx4(-/-) mice, we elucidate an essential role for the glutathione/Gpx4 axis in preventing lipid-oxidation-induced acute renal failure and associated death. We furthermore systematically evaluated a library of small molecules for possible ferroptosis inhibitors, leading to the discovery of a potent spiroquinoxalinamine derivative called Liproxstatin-1, which is able to suppress ferroptosis in cells, in Gpx4(-/-) mice, and in a pre-clinical model of ischaemia/reperfusion-induced hepatic damage. In sum, we demonstrate that ferroptosis is a pervasive and dynamic form of cell death, which, when impeded, promises substantial cytoprotection.
                Bookmark

                Author and article information

                Contributors
                yingzihe09611@126.com
                Journal
                J Cell Mol Med
                J Cell Mol Med
                10.1111/(ISSN)1582-4934
                JCMM
                Journal of Cellular and Molecular Medicine
                John Wiley and Sons Inc. (Hoboken )
                1582-1838
                1582-4934
                14 September 2020
                October 2020
                : 24
                : 20 ( doiID: 10.1111/jcmm.v24.20 )
                : 12065-12081
                Affiliations
                [ 1 ] ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital Fudan University Shanghai China
                [ 2 ] NHC Key Laboratory of Hearing Medicine (Fudan University) Shanghai China
                Author notes
                [*] [* ] Correspondence

                Yingzi He, ENT institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 83 Fenyang Road, Shanghai 200031, China.

                Email: yingzihe09611@ 123456126.com

                Author information
                https://orcid.org/0000-0002-2248-2237
                Article
                JCMM15839
                10.1111/jcmm.15839
                7579698
                32929878
                55d0785b-8212-4ac4-9965-cda6c82081ef
                © 2020 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 April 2020
                : 13 August 2020
                : 17 August 2020
                Page count
                Figures: 8, Tables: 0, Pages: 17, Words: 9362
                Funding
                Funded by: National Natural Science Foundation of China , open-funder-registry 10.13039/501100001809;
                Award ID: 81870728
                Award ID: 81900931
                Award ID: 81800912
                Funded by: Shanghai Rising‐Star Program
                Award ID: 19QA1401800
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                October 2020
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.9.3 mode:remove_FC converted:22.10.2020

                Molecular medicine
                cisplatin,ferroptosis,mitochondrial function,ototoxicity,reactive oxygen species

                Comments

                Comment on this article